PCA, Neural Networks and Estimation for Face Detection

  • Raphaël Feraud
Part of the NATO ASI Series book series (volume 163)


A generative neural network model, constrained by non-face examples chosen by an iterative algorithm, is applied to face detection. To extend the detection ability in orientation and to decrease the number of false alarms, different combinations of networks are tested: ensemble, conditional ensemble and conditional mixture of networks. The use of a conditional mixture of networks obtains better results on different benchmark face databases than state-of-the-art.


False Alarm False Alarm Rate Face Detector Face Database Detection Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Baldi, P. and Hornik, K., 1989]
    Baldi, P. and Hornik, K. (1989). Neural networks and principal components analysis: Learning from examples without local minima. Neural Networks, 2:53–58.CrossRefGoogle Scholar
  2. [Collobert, M. et al., 1996]
    Collobert, M., Feraud, R., Le Tourneur, G., Bernier, O., Viallet, J.E, Mahieux, Y., and Collobert, D. (1996). Listen: a system for locating and tracking individual speaker. In Second International Conference On Automatic Face and Gesture Recognition.Google Scholar
  3. [Feraud, R. et al., 1997]
    Feraud, R., Bernier, O., and Collobert, D. (1997). A constrained generative model applied to face detection. Neural Processing Letters.Google Scholar
  4. [Geman, S. et al., 1992]
    Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias-variance dilemma. Neural Computation, 4:1–58.CrossRefGoogle Scholar
  5. [Jacobs, R. A. et al., 1991]
    Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptative mixtures of local experts. Neural Computation, 3:79–87.CrossRefGoogle Scholar
  6. [Kramer, 1991]
    Kramer, M. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37:233–243.CrossRefGoogle Scholar
  7. [Raviv, Y. and Intrator, N., 1996]
    Raviv, Y. and Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique. Connection Science, 8:355–372.CrossRefGoogle Scholar
  8. [Rowley, H. et al., 1995]
    Rowley, H., Baluja, S., and Kanade, T. (1995). Human face detection in visual scenes. In Neural Information Processing Systems 8.Google Scholar
  9. [Sung, K. and Poggio, T., 1994]
    Sung, K. and Poggio, T. (1994). Example-based learning for view-based human face detection. Technical report, M.I.T.Google Scholar
  10. [Turk, M. and Pentland, A., 1991]
    Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86.CrossRefGoogle Scholar
  11. [Vapnik, 1995]
    Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York Heidelberg Berlin.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Raphaël Feraud
    • 1
  1. 1.France-Télécom CNETLannionFrance

Personalised recommendations