Spectral-Line Broadening and Shift

  • Vladimir S. Lebedev
  • Israel L. Beigman
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 22)


This chapter is devoted to the impact broadening and shift of spectral lines corresponding to radiative transitions involving Rydberg states. We give a brief account of the semiclassical and quantum approaches to impact broadening and shift and consider various mechanisms of identified processes based on the results of the collision theory presented in the preceding chapters. Main attention is paid to studies of the broadening width and shift behavior for Rydberg atomic series perturbed by thermal collisions with the rare gas and alkali-metal atoms, for which there are extensive experimental and theoretical data. Another goal is to describe the spectral-line broadening for transitions between highly excited levels induced by inelastic electron collisions in a plasma.


Elastic Scattering Principal Quantum Number Rydberg Atom Impulse Approximation Shift Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. [9.1]
    M. Baranger: in Atomic and Molecular Processes ed. D.R. Bates (Academic, New York 1958) Chap. 13Google Scholar
  2. [9.2]
    N. Allard, J. Kielkopf: Rev. Mod. Phys. 54, 1103(1982)ADSCrossRefGoogle Scholar
  3. [9.3]
    P. Anderson: Phys. Rev. 76, 647(1949)ADSMATHCrossRefGoogle Scholar
  4. [9.4a]
    C.Z. Reinsberg: Z. Phys. 93, 416(1935);ADSMATHCrossRefGoogle Scholar
  5. [9.4b]
    C.Z. Reinsberg: Z. Phys. 105, 460(1937)ADSCrossRefGoogle Scholar
  6. [9.5a]
    O.B. Firsov: Zh. Eksp. Teor. Fiz. 21, 627(1951);Google Scholar
  7. [9.5b]
    O.B. Firsov: Zh. Eksp. Teor. Fiz. 21, 634(1951)Google Scholar
  8. [9.6]
    G.K. Ivanov: Opt. Spectrosk. 40, 965(1976) [Opt. Spectrosc. 40, 554(1976)]Google Scholar
  9. [9.7]
    G. Hermann, B. Kaulakys, G. Lasnitschka, G. Mahr, A. Scharmann: J. Phys. B25 L407(1992)ADSGoogle Scholar
  10. [9.8]
    A. Flusberg, R. Kachru, T. Mossberg, S.R. Hartmann: Phys. Rev. A19, 1607(1979)Google Scholar
  11. [9.9]
    R. Kachru, T.W. Mossberg, S.R. Hartmann: Phys. Rev. A21 1124(1980)ADSGoogle Scholar
  12. [9.10]
    K.H. Weber, K. Niemax: Z. Phys. A309 19(1982)ADSGoogle Scholar
  13. [9.11]
    T.F. Gallagher, W.E. Cooke: Phys. Rev. A19, 2161(1979)ADSGoogle Scholar
  14. [9.12]
    J. Boulmer, J.F. Delpech, J.C. Gauthier, K. Safinya: J. Phys. B14, 4577(1981)ADSGoogle Scholar
  15. [9.13]
    K. Weber, K. Niemax: Z. Phys. A307 13(1982);ADSGoogle Scholar
  16. [9.13]
    K. Weber, K. Niemax: Z. Phys. 312, 339(1983)ADSGoogle Scholar
  17. [9.14]
    E.E. Nikitin, S.Ya. Umansky: Theory of Slow Atomic Collisions (Springer, New York 1984)Google Scholar
  18. [9.15]
    L.P. Presnyakov: Phys. Rev. A2, 1720(1970)ADSGoogle Scholar
  19. [9.16]
    G.V. Golubkov, G.K. Ivanov: Z. Phys. A319, 17(1984)ADSGoogle Scholar
  20. [9.17]
    Yu.N. Demkov, V.I. Osherov: Zh. Eksp. Teor. Fiz. 53, 1589(1967)Google Scholar
  21. [9.18]
    L.A. Minaeva, I.I. Sobel’man: J. Quant. Spectrosc. Radiat. Transf. 8, 783(1968)ADSCrossRefGoogle Scholar
  22. [9.19]
    H.P. Griem: Astrophys. J. 148, 547(1967)ADSCrossRefGoogle Scholar
  23. [9.20]
    G. Himmel, F. Pinnekamp: J. Phys. B10, 1457(1977)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Vladimir S. Lebedev
    • 1
  • Israel L. Beigman
    • 1
  1. 1.Optical Division, P. N. Lebedev Physical Inst.Russian Academy of SciencesMoscowRussia

Personalised recommendations