Skip to main content

Resonante Laser-Massenspektrometrie: Neue Möglichkeiten für die schnelle chemische Analytik

  • Chapter
Book cover Analytiker-Taschenbuch

Part of the book series: Analytiker-Taschenbuch ((ANALYTIKERTB,volume 19))

Zusammenfassung

Modernen Analytiklabors stehen heute Methoden des chemischen Spuren-und Ultraspurennachweises zur Verfügung, die in Bezug auf Empfindlichkeit und Selektivität ausgesprochen weit entwickelt sind. Dies ist vor allem durch den Einsatz gekoppelter mehrdimensionaler Techniken gelungen. Der Preis für diesen hohen Standard ist jedoch eine sehr zeit- und arbeitsaufwendige Probenvorbereitung. So werden für speziesselektive Spurenanalytik organischer Schadstoffe, wie z.B. Dioxin- und Pestizidrückstände, einige Tage oder sogar Wochen benötigt [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bundesgesetzblatt Teil 1, Z 5702 A; ausgegeben zu Bonn 28.4.1992, Nr. 21, 15.4.1992 Klärschlammverordnung (AbfKlärV) 912

    Google Scholar 

  2. VDI (Hrsg) (1996) Aktuelle Aufgaben der Messtechnik in der Luftreinhaltung. VDI Berichte 1257, VDI Verlag, Düsseldorf

    Google Scholar 

  3. Tacke M, Stricker W (Hrsg) (1997) Combustion Diagnostics. Proceedings of SPIE Vol. 3108, Bellingham

    Google Scholar 

  4. Letokhov VS (Hrsg) (1986) Laser Analytical Spectrochemistry, Adam Hilger, Bristol

    Google Scholar 

  5. Andrews DL (1990) Lasers in Chemistry, Springer-Verlag, Berlin

    Google Scholar 

  6. Kompa K, Sick V, Wolfram VJ (Hrsg) (1993) Laser Diagnostics for Industrial Processes, Special Issue of Ber. Bunsenges. Phys Chem Vol 97

    Google Scholar 

  7. Andrews DL (Hrsg) (1994) Applied laser spectroscopy: techniques, instrumentation and application. VCH, Weinheim

    Google Scholar 

  8. Löhmannsröben H-G, Roch Th (1996) Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben. Analytiker Taschenbuch 15: 217

    Article  Google Scholar 

  9. Zenobi R, Philippoz J-M, Buseck P, Zare RN (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246:1026

    Article  CAS  Google Scholar 

  10. Zenobi R (1995) In situ analysis of surfaces and mixtures by laser desorption mass spectrometry. Int J Mass Spectrom Ion Proc 145:51

    Article  CAS  Google Scholar 

  11. Boesl U, Neusser HJ, Schlag EW (1978) Two-Photon Ionization of Polyatomic Molecules in a Mass Spectrometer. Z Naturforsch 33 A: 1546

    Google Scholar 

  12. Boesl U, Neusser HJ, Schlag EW (1979) Mass Selective Two-Photon Ionization of a Polyatomic Molecule; in: Kompa KL, Smith SD (Hrsg) Laser Induced Processes in Molecules. Springer Series of Chemical Physics 6:219

    Google Scholar 

  13. Herrmann A, Leutwyler S, Schumacher E, Wöste L (1977) Multiphoton ionization: Mass selective laser-spectroscopy of Na2 and K2 in molecular beams. Chem Phys Lett 52:418

    Article  CAS  Google Scholar 

  14. Antonov VS, Knyazev IN, Letokhov VS, Matiuk VM, Movshev VG, Potapov VK (1978) Stepwise laser photoionization of molecules in a mass spectrometer: a new method for probing and detection of polyatomic molecules. Optics Letters 3:37

    Article  CAS  Google Scholar 

  15. Zandee L, Bernstein RB (1979) Resonance-enhanced multiphoton ionization and fragmentation of molecular beams: NO, I2, Benzene and Butadiene. J Chem Phys 71:1359

    Article  CAS  Google Scholar 

  16. Johnson PM (1980) Molecular multiphoton ionization spectroscopy. Appl Optics 19:3920

    Article  CAS  Google Scholar 

  17. Boesl U, Neusser HJ, Schlag EW (1980) Visible and UV Multiphoton Ionization and Fragmentation of Polyatomic Molecules. J Chem Phys 72:4327

    Article  CAS  Google Scholar 

  18. Gobeli DA, Yang JJ, El-Sayed MA (1985) Laser multiphoton ionization-dissociation mass spectrometry. Chem Rev 85:529

    Article  CAS  Google Scholar 

  19. Lubman DM (1987) Optically selective molecular mass spectrometry. Anal. Chem. 59:31A

    Google Scholar 

  20. Boesl U (1991) Multiphoton Excitation and Mass Selective Ion Detection For Neutral and Ion Spectroscopy. J Phys Chem 95:2949

    Article  CAS  Google Scholar 

  21. Letokhov VS (1987) Laser Photoionization Spectroscopy, Academic Press, Inc. Orlando

    Google Scholar 

  22. Lubman DM (1993) Methods utilizing low and medium laser irradiance, Chapter 3 in Vertes A, Gijbels R, Adams F (Hrsg) (1993) Laser Ionization Mass Analysis, John Wiley & Sons, New York, p 321

    Google Scholar 

  23. Winograd N, Parks J (Hrsg) (1997) Resonance Ionization Spectroscopy 1996. AIP Conference Proceedings Vol. 388, American Institute of Physics, Woodbury

    Google Scholar 

  24. Cotter RJ (1984) Laser and mass spectrometry. Anal Chem 56:485A

    Article  CAS  Google Scholar 

  25. Lubman DM (Hrsg) (1990) Lasers and Mass Spectrometry, Oxford University Press, New York

    Google Scholar 

  26. Vertes A, Gijbels R, Adams F (Hrsg) (1993) Laser Ionization Mass Analysis, John Wiley & Sons, New York

    Google Scholar 

  27. Amirav A, Even U, Jortner J (1982) Analytical applications of supersonic jet spectroscopy. Anal Chem 1666

    Google Scholar 

  28. Hayes JM (1987) Analytical Spectroscopy in Supersonic Expansions. Chem Rev 87:745

    Article  CAS  Google Scholar 

  29. Zimmermann R, Boesl U, Weickhardt C, Lenoir D, Schramm KW, Kettrup A, Schlag EW (1994) Isomer-Selective Ionization of Chlorinated Aromatics with Lasers for Analytical Time-of-Flight Mass Spectrometry: First Results for Polychlorinated Dibenzo-p-Dioxins (PCDD), Biphenyls (PCB) and Benzenes (PCBz). Chemosphere 29:1877

    Article  CAS  Google Scholar 

  30. Boesl U, Neusser HJ, Schlag EW (1984) Process and apparatus for determining molecule spectra. United States patent Nr. 4433241

    Google Scholar 

  31. Zakheim DS, Johnson PM (1980) Rate equation modelling of molecular multiphoton ionization dynamics. Chem Phys 46:263

    Article  CAS  Google Scholar 

  32. Zimmermann R, Boesl U, Lenoir D, Kettrup A, Grebner ThL. Neusser HJ (1995) The ionization energies of polychlorinated dibenzo-p-dioxins: new experimental results and theoretical studies. Int J Mass Spectrom Ion Proc 145:97

    Article  CAS  Google Scholar 

  33. Zimmermann R (1996) Anwendung isomerenselektiver Lasermassenspektrometrie in der Analytik (Dissertation TU München 1995); in: Boesl U, Kettrup A, Schlag EW (Hrsg) Laserspektroskopie und Lasermassenspektrometrie Band I. Herbert Utz Verlag, München

    Google Scholar 

  34. Kosmidis C, Ledingham KWD, Clark A, Marshall A, Jennings R, Sander J, Singhal RP (1994) On the dissociation pathways of nitrobenzene. Int J Mass Spectrom Ion Proc 135:229

    Article  CAS  Google Scholar 

  35. Demtröder W (1996) Laser Spectroscopy 2nd ed., Springer Verlag, Berlin

    Google Scholar 

  36. Fix A, Schröder T, Wallenstein R (1991) The optical parametric oscillators of beta-bariumborate and lithiumborate: new sources of powerful tunable laser radiation in the ultraviolet, visible and near infrared. Lasers and Optoelektronik 3:106

    Google Scholar 

  37. Nagel H (1997) Lasermassenspektrometrie molekularer Spurenstoffe: On-line Analyse dynamischer Prozesse und katalytischer Umsetzungen im Abgas von Verbrennungsmotoren (Dissertation TU München 1996); in: Boesl U, Schlag EW (Hrsg) Laserspektroskopie und Lasermassenspektrometrie Band IL Herbert Utz Verlag, München

    Google Scholar 

  38. Rohwer ER, Beavis RC, Köster C, Lindner J, Grotemeyer J, Schlag EW (1988) Fast pulsed laser induced electron generation for electron impact mass spectrometry. Z Naturforsch 43a:1151

    Google Scholar 

  39. Boyle JG, Pfefferle LD, Gulcicek EE, Colson SD (1991) Laser-driven electron ionization for a VUV photoionization time-of-flight mass spectrometer. Rev Sci Instrum 62:323

    Article  CAS  Google Scholar 

  40. Zimmermann R, Lermer Ch, Schramm KW, Kettrup A, Boesl U (1995) Three-Dimensional Trace Analysis: Combination of Gas Chromatography, Supersonic Beam UV-Spectroscopy, and Time-of-Flight Mass Spectrometry. Europ Mass Spectrom 1:341

    Article  CAS  Google Scholar 

  41. Boesl U, Zimmermann R (1997) Gepulstes Ventil für die Kopplung einer Gaschromatographie-Kapillare an ein sekundäres Spurenanalysegerät mittels eines Überschallstrahles. Deutsches Patent Offenlegungsschrift DE 19539589 Al. Boesl U, Zimmermann R, Kettrup A (1997) Ventil und dessen Verwendung; Europäische Patentanmeldung EP 0770870 A2

    Google Scholar 

  42. Püffel P (1997) unveröffentlichte Ergebnisse, TU München und BMW AG München

    Google Scholar 

  43. Tanada TN, Velazquez J, Ahemmi AN, Cool T (1993) Detection of toxic emissions from incinerators. Ber Bunsenges Phys Chem 97:1516

    CAS  Google Scholar 

  44. Oser H, Thanner R, Grotheer H, Walter R, Richers R, Merz A (1977) Jet-REMPI for process control in incineration; in Zitat 3 Seite 21

    Google Scholar 

  45. Boesl U, Weinkauf R, Weickhardt C, Schlag EW (1994) Laser Ion Sources for Time-of-Flight Mass Spectrometry, Int J Mass Spectrom Ion Proc 131:87

    Article  CAS  Google Scholar 

  46. Hurst GS, Payne MG, Kramer SD, Chen CH (1980) Counting the atoms. Physics Today Sept: 24

    Google Scholar 

  47. Wendt K, Bushaw BA, Bhowmick G und Mitarbeiter (1997) 89,90Sr-determination in various environmental samples by collinear resonance ionization spectroscopy; in Zitat 23 Seite 361

    Google Scholar 

  48. Boesl U, Weickhardt C, Schmidt S, Nagel H, Schlag EW (1993) A calibration method for the quantitative analysis of gas mixtures by means of laser mass spectrometry. Rev Sci Instrum. 64:3462

    Article  Google Scholar 

  49. Wiley WC, McLaren ICH (1955) Time-of-flight mass spectrometer with improved resolution. Rev Scient Instrum 26:1150

    Article  CAS  Google Scholar 

  50. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA (1973) The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov Phys-JETP 37:45

    Google Scholar 

  51. Schlag EW (Hrsg) (1994) Time-of-flight mass spectrometry and its application. Special Issue of Int J Mass Spectrom Ion Proc Vol 131

    Google Scholar 

  52. Boesl U, Weinkauf R, Schlag EW (1992) Reflectron Time-of-Flight Mass Spectrometry and Laser Excitation for the Analysis of Neutrals, Ionized Molecules and Secondary Fragments. Int J Mass Spectrom Ion Proc 112:121

    Article  CAS  Google Scholar 

  53. Bahr U, Karas M, Hillenkamp F (1991) Fresenius J Anal Chem 348:783

    Article  Google Scholar 

  54. Walter W, Boesl U, Schlag EW (1986) Mass Resolution of 10 000 in a Laser Ionization Time-of Flight Mass Spectrometer. Int J Mass Spectrom Ion Proc 71:309

    Article  CAS  Google Scholar 

  55. Bergmann T, Martin TP, Schaber H (1989) High-resolution time-of-flight mass spectrometer. Rev Sci Instrum 60:792

    Article  CAS  Google Scholar 

  56. Kaufmann R, Kirsch D, Spengler B (1994) Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI); Int J Mass Spectrom Ion Proc 131:355

    Article  CAS  Google Scholar 

  57. Boesl U, Grotemeyer J, Walter K, Schlag EW (1987) A High Resolution Time-of-Flight Mass Spectrometer with Laser Desorption and Laser Ionization Source. Anal Instrum 16:151

    Article  CAS  Google Scholar 

  58. Meijer G, de Vries MS, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic molecules. Appl Phys B51:395

    CAS  Google Scholar 

  59. California Air Resources Board (1991) Proposed reactivity adjustment factors for transitional low-emission vehicles: Staff Report and Technical Support Document. State of California Air Resources Board, Sacramento

    Google Scholar 

  60. Frey R, Nagel H, Franzen J, Betzold H, Ulke W, Boesl U (1995) Dynamische Gasmessungen mit einem Lasermassenspektrometer. MTZ Motortechnische Zeitschrift 56:608

    Google Scholar 

  61. Boesl U, Nagel H, Weickhardt C, Frey R, Schlag EW (1998) Vehicle Exhaust Emission Time-Resolved Multicomponent Analysis by Laser Mass Spectrometry, in: The Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons in press

    Google Scholar 

  62. Nagel H, Frey R, Boesl U (1996) On-Line Analysis of Formaldehyde and Acetaldehyde in Non-Stationary Engine Operation Using Laser Mass spectrometry. SAE technical papers series 961084:131

    Book  Google Scholar 

  63. Robert Bosch GmbH (Hrsg,) (1994) Abgastechnik für Ottomotoren, Robert Bosch GmbH, Stuttgart 1994

    Google Scholar 

  64. Nagel H, Frey R, Hertgerink C, Rikeit HE, Greiner RD, Klein Ch, Boesl U (1997) Online Analysis of Individual Aromatic Hydrocarbons in Automotive Exhaust: Dealkylation of the Aromatic Hydrocarbons in the Catalytic Converter. SAE technical papers series 971606:47

    Book  Google Scholar 

  65. Beckmann M (1995) Mathematische Modellierung und Versuche zur Prozeßführung bei der Verbrennung und Vergasung in Rostsystemen zur thermischen Rückstandsbehandlung. Cutec-Schriftenreihe Nr. 21 (ISBN 3-931443-28-0)

    Google Scholar 

  66. Thomí-Kozmiensky KJ (1994) Thermische Abfallbehandlung. EF-Verlag für Energie- und Umwelttechnik

    Google Scholar 

  67. Zimmermann R, Heger HJ, Kettrup A, Boesl U (1997) A Mobile REMPI-TOFMS Device for On-Line Analysis of Aromatic Pollutants in Waste Incinerator Flue Gases: First Results Rap Commun Mass Spectrom 11:1095. Zimmermann R, Heger HJ, Dormer R, Kettrup A, Boesl U in Zitat [3] Seite 10. Zimmermann R, Lenoir D, Kettrup A, Nagel H, Boesl U (1996) in Twenty-Sixth Symposium on Combustion, The Combustion Institute, Seite 2859

    Google Scholar 

  68. Gittins CM, Castaldi MJ, Senkan SM, Rohlfing EA (1997) Real-time quantitative analysis of combustion-generated polycyclie aromatic hydrocarbons by resonance-enhanced multiphoton ionization time-of-flight mass spectrometry. Anal Chem 69:286

    Article  CAS  Google Scholar 

  69. Rohlfing EA (1988) Resonantly enhanced multiphoton ionization for the trace detection of chlorinated aromatics. Twenty-second Symposium on Combustion, The Combustion Institute, Seite 1843

    Google Scholar 

  70. Rohlfing EA, Rohlfing CM (1989) Resonant two-photon ionization spectroscopy of jet-cooled p-dichlorobenzene. J Phys Chem 93:94

    Article  CAS  Google Scholar 

  71. Weickhardt C, Zimmermann R, Boesl U, Schlag EW (1993) Laser Mass Spectrometry of Dibenzodioxin, Dibenzofuran and Two Isomers of Dichlorodibenzodioxins: Selective Ionization. Rapid Comm Mass Spectrom 7:183

    Article  CAS  Google Scholar 

  72. Weickhardt C, Zimmermann R, Schramm KW, Boesl U, Schlag EW (1994) Laser Mass Spectrometry of the Di-, Tri- and Tetrachlorobenzenes: Isomer Selective Ionization and Detection. Rapid Comm Mass Spectrom 8:381

    Article  CAS  Google Scholar 

  73. Zimmermann R, Rohwer RE, Heger HJ, Schlag EW, Kettrup A, Gilch G, Lenoir D, Boesl U (1997) Resonance ionization laser mass spectrometry: new possibilities for on-line analysis of waste incinerator emissions in Zitat [23] Seite 123

    Google Scholar 

  74. Öberg T, Bergström J (1989) Indicator Parameters for PCDD/PCDF. Chemosphere 19:337

    Article  Google Scholar 

  75. Fänmark I, van Bavel B, Markland S, Strömberg B, Berge N, Rappe C (1993) Influence of combustion paramters on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environm Sci and Tech 27:1602

    Article  Google Scholar 

  76. Kaune A, Lenoir D, Nikolai U, Kettrup A (1994) Estimating concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans in the stach gas of a hazardous waste incinerator from concentrations of benzenes and biphenyls. Chemosphere 29:2083

    Article  CAS  Google Scholar 

  77. Zimmermann R, Heger HJ, Yeretzian Ch, Nagel H, Boesl U (1996) Application of Laser Ionization Mass Spectrometry for On-Line Monitoring of Volatiles in the Headspace of Food Products: Roasting and Brewing of Coffee. Rap. Commun. Mass Spectrom. 10:1975.

    Article  Google Scholar 

  78. Zimmermann R, Heger HJ, Dormer R, Yeretzian C, Kettrup A, Boesl U (1997) in FOOD ING First Interantional Convention Food Ingredients: New Technologies, Proceedings, United Nations Industrial Development Organisation, Seite 343

    Google Scholar 

  79. Voumard P, Zhan Q, Zenobi R (1993) A new instrument for spatially resolved laser desorption/laser multiphoton ionization mass spectrometry. Rev Sci Instrum 64:2215

    Article  CAS  Google Scholar 

  80. Zimmermann R, Boesl U, Heger J, Rohwer R, Ortner K, Schlag W, Kettrup A (1997) Hyphenation of gas chromatography and resonance-enhanced laser mass spectrometry (REMPI-TOFMS): A multidimesnional analytical technique, J High Resol Chromatogr 20:461 und in Zitat [23] Seite 119

    Article  CAS  Google Scholar 

  81. Opsal RB, Reilly JP (1988) Ionization of alkylbenzenes studied by gas chromatography/laser ionization mass spectrometry. Anal Chem: 1060

    Google Scholar 

  82. Opsal RB, Reilly JP (1986) Selective analysis of nitro- and nitroso-containing compounds by laser ionization gas chromatography/mass spectrometry. Anal Chem: 2919

    Google Scholar 

  83. Marshall A, Clark A, Deas RM, Kosmidis C, Ledingham KWD, Peng W, Singhai RP (1994) Sensitive atmospheric pressure detection of nitroaromatic compounds and NOx (x = 1,2) molecules in an ionization chamber using resonance-enhanced multi-photon ionization. Analyst 119:1719

    Article  CAS  Google Scholar 

  84. Ledingham KWD, Kilic HS, Kosmidis C, Deas RM, Marshall A, McCanny Th, Singhai RS, Langley AJ, Shaikh W (1995) A comparison of femtosecond and nanosencond multiphoton ionization and dissociation for some nitro-molecules. Rapid Comm Mass Spectrom 9: 1522

    Article  CAS  Google Scholar 

  85. Bushaw BA, Juston F, Nörtershäuser W, Trautmann N, Voss-de Haan P, Wendt K (1997) Multiple resonances RIMS measurements of calcium isotopes using diode lasers; in Zitat 23 Seite 115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boesl, U., Zimmermann, R., Nagel, H. (1998). Resonante Laser-Massenspektrometrie: Neue Möglichkeiten für die schnelle chemische Analytik. In: Günzler, H., et al. Analytiker-Taschenbuch. Analytiker-Taschenbuch, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72167-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72167-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72168-7

  • Online ISBN: 978-3-642-72167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics