Advertisement

Gene Therapy pp 91-101 | Cite as

HIV Gene Therapy: Current Status and Its Role in Therapy

  • Ernst Bohnlein
Conference paper
Part of the NATO ASI Series book series (volume 105)

Abstract

In the early 1980s, surprisingly increasing numbers of patients with infections reminiscent of immune suppression were diagnosed predominantly in metropolitan US clinics. The common denominator appeared to be blood borne transmission of a virus as this patient group mostly comprised recipients of blood products (eg. factor VIII) and sexually active homosexual men. In 1983, a novel human retrovirus was isolated (2, 18, 24) and eventually named human immunodeficiency virus type I (HIV-1), the etiologic agent of the acquired immune deficiency syndrome (AIIDS). HIV-I disease is characterizedby an extended clinical latency period between the time of primary infection and the manifestation of the disease. IHV-1 infects cells of the hematopoietic system: CD4+ T lymphocytes, macrophages, dendritic cells, and microglial cells of the central nervous system (25). Recent studies suggest that HIV1 actively replicates throughout the “latency” period which eventually leads to depletion of immune effector cells (19, 48). This cell loss turns into a dysfunctional immune system characterized by a multitude of malignancies (ie. lymphomas, Kaposi sarcoma) and opportunistic infections (ie. candida, PCP, CMV, etc.), a hallmark of AIDS.

Keywords

Human Immunodeficiency Virus Gene Therapy Human Immunodeficiency Virus Type Acquire Immune Deficiency Syndrome Antisense Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baltimore D. Intracellular immunization. Nature 335:395–396; 1988PubMedCrossRefGoogle Scholar
  2. 2.
    Barre-Sinoussi F, Cherinann JC, Rey F, Nugeyre MT, Chamaret J, Gruest J, Dauguet C, Axier-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, and Montagnier L. Isolation of a T-lymphotropic retroviras from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220:868–871; 1983PubMedCrossRefGoogle Scholar
  3. 3.
    Bednarik DP, Mosca JD, Rai NBK, and Pitha PM. Inhibition of human immunodeficiency virus (HIV) replication by HIV-trans-activated a2-interferon. Proc Natl Acad Sci USA 86: 4958–4962; 1989PubMedCrossRefGoogle Scholar
  4. 4.
    Bevec D, Dobrovnik M, Hauber, J, and Böhnlein E. Inhibition of HIV-1 Replication in Human T- cells by Retroviral-Mediated Gene Transfer of a Dominant-Negative Rev Trans-Activator. Proc. Natl. Acad. Sci. USA 89: 9870–9874; 1992PubMedCrossRefGoogle Scholar
  5. 5.
    Bevec D, Jaksche H, Oft M, Wöhl T, Himmelspach M, Pacher A, Schebesta M, Koettnitz K, Dobrovnik M, Csonga R, Lottspeich F, and Hauber J. Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Science 271: 1858–1860; 1996PubMedCrossRefGoogle Scholar
  6. 6.
    Blaese RM. Treatment of severe combined immune deficiency (SCID) due to adenosine deaminase (ADA) with autologous lymphocytes transduced with a human ADA gene. Hum Gene Ther. 1: 327–362, 1990CrossRefGoogle Scholar
  7. 7.
    Buschacher GL, Freed EO, and Panganiban AT. Cells induced to express a human immunodeficiency virus type 1 envelope gene mutant inhibit the spread of wild-type virus. Hum Gene Thier. 3: 391–397; 1992CrossRefGoogle Scholar
  8. 8.
    Caruso M, and Klatzmann D. Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected cell population. Proc. Natl. Acad. Sci. USA 89:182–186; 1992PubMedCrossRefGoogle Scholar
  9. 9.
    Chang HK, Gendelman R, Lisziewicz J, Gallo RC, and Ensoli B. Block of HIV-1 infection by a combination of antisense tat RNA and TAR decoys: a strategy for control of HIV-1. Gene Ther, 1:208–216; 1994PubMedGoogle Scholar
  10. 10.
    Chen S-Y, Bagley J, and Marasco WA. Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 5:595–601; 1994PubMedCrossRefGoogle Scholar
  11. 11.
    Chuah MK, Vandendriessche T, Chang HK, Ensoli B, and Morgan RA. Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense-TAR. Hum Gene Ther. 5:1467–1475; 1994PubMedCrossRefGoogle Scholar
  12. 12.
    Cohli H, Fan B, Joshi RL, Ramezani A, Li X, and Joshi S. Inhibition of HIV-1 multiplication in a human CD4+ lymphocytic cell line expressing antisense and sense RNA molecules containing HIV-1 packaging signal and rev response element(s). Antisense Res. and Dev. 4: 19–29; 1994Google Scholar
  13. 13.
    Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, Jones M, Facey K, Whitacre C, McAuliffe VJ, Friedman HM, Merigan TC, Reichman RC, Hooper C, and Corey L. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N Engi J Med 334: 1011–1017; 1996CrossRefGoogle Scholar
  14. 14.
    Condra, JH, Schleif WA, Blahy OM, Gadryelski LJ, Graham DJ, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Titus D, Yang T, Teppler H, Squires KE, Deutsch PJ, and Emini EA. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374:569–571; 1995PubMedCrossRefGoogle Scholar
  15. 15.
    Cullen BR. Human Immunodeficiency Virus as a Prototypic Complex Retrovirus. J. Virol. 65:1053–1056; 1991PubMedGoogle Scholar
  16. 16.
    Curiel TJ, Cook DR, Wang Y., Hahn BH, Ghosh SK, and Harrison GS. Long-term inhibition of clinical and laboratory human immunodeficiency virus strains in human T-cell lines containing an HIV-regulated diphtheria toxin A chain gene. Hum Gene Ther. 4: 741–747; 1993PubMedCrossRefGoogle Scholar
  17. 17.
    Duan L, Bagasra O, Laughlin MA, Oakes JW, and Pomerantz RJ. Comparison of Trans-Dominant Inhibitory Mutant Human Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single chain antibody. Proc Natl Acad Sci USA 91: 5075–5079; 1994PubMedCrossRefGoogle Scholar
  18. 18.
    Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, Mann D, Sidhu GD, Stahl RE, Zolla-Pazner S, Leibowitch J, and Popovic M. Isolation of human T- cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865–867; 1983PubMedCrossRefGoogle Scholar
  19. 19.
    Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126; 1995PubMedCrossRefGoogle Scholar
  20. 20.
    Junker U, Escaich S, Plavec I, McPhee F, Rosé J, Craik CS, and Böhnlein E. Intracellullar Expression of HIV-1 Protease Variants Inhibits Replication of Wild-type And Protease Inhibitor Resistant HIV-1 Strains in Human T-Cell Lines J. Virol.; in press; 1996Google Scholar
  21. 21.
    Junket U, Bevec D, Barske C, Kalfoglou C, Escaich S, Dobrovnik M, Hauber J, and Böhnlein E. Intracellular Expression of Cellular eIF5A Mutants Inhibits HIV-1 Replication in Human T Cells: A New Approach for AIDS Gene Therapy. Hum Gene Ther., in press; 1996Google Scholar
  22. 22.
    Larder, BA, Kellam P, and Kemp Sci Convergent combination therapy can select viable multidrug resistant HIV-1 in vitro. Nature 365; 451–453; 1993PubMedCrossRefGoogle Scholar
  23. 23.
    Lee T, Sullenger BA, Gallardo HF, Ungers GF, and Gilboa E. Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol. 4: 66–74; 1992PubMedGoogle Scholar
  24. 24.
    Levy JA, Hollander H., Shimabukuro J, Mills, J, and Kaminsky L. Isolation of lymphdcytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842; 1994CrossRefGoogle Scholar
  25. 25.
    Levy JA. Pathogenesis of human immunideficiency virus infection. Microbiological Reviews 57(1): 183–289; 1993PubMedGoogle Scholar
  26. 26.
    Lisziewicz J, Sun D, Trapnell B, Thomson M, Chang HK, Ensoli B, and Peng B. An autoregulated dual-function antitat gene for human immnunodeficiency virus type 1 gene therapy. J. Virol. 69: 206–212; 1995PubMedGoogle Scholar
  27. 27.
    Lo KM, Biasolo MA, Dehni G, Palu G, and Haseltine WA. Inhibition of replication of HIV-1 by retrovirat vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology 190: 176–183; 1992PubMedCrossRefGoogle Scholar
  28. 28.
    Malim MH, Freimuth WW, Liu J, Boyle TJ, Lylerly HK, Cullen BR, And Nabel GJ. Stable expression of transdominant rev protein in human T cells inhibits human immunodeficiency virus replication. J. Exp. Med. 176: 1197–1201; 1992PubMedCrossRefGoogle Scholar
  29. 29.
    Marasco WA, Hasletine WA, and Chen SY. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gpl20 single-chain antibody. Proc. Natl. Acad. Sci. USA 90: 7889–7893; 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Mellors JW, Rinaldo CR, Gupta P, White RM, Todd JA, and Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272: 1167–1170; 1996PubMedCrossRefGoogle Scholar
  31. 31.
    Mhashilkar AM, Bagley J, Chen SY, Szilvay AM, Heiland DG, and Marasco WA. Inhibition of HIV-1 tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J. 14:1542–1551; 1995PubMedGoogle Scholar
  32. 32.
    Modesti N, Garcia J, Debouck C, Peterlin M, and Gaynor R. Trans-dominant Tat mutants with alterations in the basic domain inhibit HIV-1 gene expression. New Biol. 3: 759–768; 1991PubMedGoogle Scholar
  33. 33.
    Morgan RA, Looney DJ, Muenchau DD, Wong-Staal F, Gallo RC, and Anderson WF. Retroviral vectors expressing soluble CD4: a potential gene therapy for AIDS. AIDS Res. Hum. Retroviruses 6:183–191; 1990PubMedCrossRefGoogle Scholar
  34. 34.
    Nabel GJ, Fox BA, Post L, Thompson CB, and Woffendin C. A molecular genetic intervention for AIDS - effects of a transdominant negative form of Rev. Hum. Gene Ther. 5: 79–92; 1994PubMedCrossRefGoogle Scholar
  35. 35.
    Ojwang JO, Hampel A, Looney DJ, Wong-Staal F, and Rappaport J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc. Nad. Acad. Sci. USA 89: 10802–10806; 1992CrossRefGoogle Scholar
  36. 36.
    Pearson L, Garcia J, Wu F, Modesti N, Nelson J, and Gaynor R. A trans-dominant tat mutant that inhibits tat-induced gene expression from the HIV LTR. Proc. Natl. Acad. Sci. USA 87: 5079–5083; 1990PubMedCrossRefGoogle Scholar
  37. 37.
    Ratner L, Fisher A, Jagodzinski LL Mitsuya H, Liou RS, Gallo RC, and Wong-Staal F. Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res. Hum. Retroviruses 3:57–69; 1987PubMedCrossRefGoogle Scholar
  38. 38.
    Rhodes A, and James W. Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. J. Gen. Virol. 71: 1965–1974; 1990PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenberg SA. The treatment of patients with advanced cancer using cyclophosphamide, interleukin-2 and tumor infiltrating lymphocytes. Hum. Gene Ther. 1: 73–92; 1990CrossRefGoogle Scholar
  40. 40.
    Sarver N, Cantin EM, Chang Pg, Zaia JA, Ladne PA, Stephens DA, and Rossi JJ. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247: 1222–1225; 1990PubMedCrossRefGoogle Scholar
  41. 41.
    Sczakiel G, and Pawlita M. Inhibition of human immunodeficiency virus type 1 replication in human T cells stably expressing antisense RNA. J. Virol. 65: 468–472; 1991PubMedGoogle Scholar
  42. 42.
    Shaheen F, Duan L, Zhu M, Bagasra O, and Pomcrantz RJ. Targeting human immunodeficiency virus type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stages of the vital life cycle. J. Virol. 70: 3392–3400; 1996PubMedGoogle Scholar
  43. 43.
    Sullenger BA, Gallardo HF, Ungers GE, and Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63: 601–608; 1990PubMedCrossRefGoogle Scholar
  44. 44.
    Trono D, Feinberg MB, and Baltimore D. HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59:113–120; 1989PubMedCrossRefGoogle Scholar
  45. 45.
    Veres G, Escaich S, Barske C, Baker J, and Böhnlein E. Constitutive intracellular Expression of Gag Antisense RNA Specifically and Effectively Inhibits HIV-1 Replication in Human CD4-Positive T Cells. Manuscript submitted.Google Scholar
  46. 46.
    Vieillard V, Lauret E, Rousseau V, and DeMayer E. Blocking of retroviral infection at a step prior to reverse transcription in cells transformed to constitutively express interferon beta. Proc. Natl. Acad. Sci. USA 91:2689–2693; 1994PubMedCrossRefGoogle Scholar
  47. 47.
    Wain-Hobson S. Sonigo P., Donas O, Cole S. and Alizon M. Nucleotide sequence of the AIDS virus LAV. Cell 40:9–17; 1985PubMedCrossRefGoogle Scholar
  48. 48.
    Wei X, Ghosh SK, Taylor ME, Johnson, VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122; 1995PubMedCrossRefGoogle Scholar
  49. 49.
    Woflendin C, Ranga U, Yang Z-Y, Xu L, and Nabel GJ. Expression of a protective gene prolongs survival of T cells in human immunodeficiency virus infected patients. Proc. Natl. Acad. Sci. USA 93: 2889–2894; 1996CrossRefGoogle Scholar
  50. 50.
    Zhou C, Bahner I, Larson GP, Zaia JA, Rossi JJ, and Kohn DB. Inhibition of HIV-1 in human T lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene 149: 33–39; 1994PubMedCrossRefGoogle Scholar
  51. 51.
    Zimmermann K, Weber S, Dobrovnik M, Hauber J, and E. Böhnlein E. Expression of Chimeric Rev Response Element Sequences Interferes with HIV-1 Rev Function, Hum Gene Ther. 3: 155–161; 1992PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ernst Bohnlein
    • 1
  1. 1.SystemixPalo AltoUSA

Personalised recommendations