Skip to main content

Flow Simulation in an Aerodynamic Diffusor of a High Loaded Radial Compressor using Different Turbulence Models

  • Chapter
  • 416 Accesses

Abstract

A two- and three-dimensional code solving the Reynolds-averaged compressible Navier-Stokes equations has been developed and successfully used for computation of the steady flow field in an aerodynamic diffuser of a high loaded centrifugal compressor. For the purpose of comparison the turbulence model of Baldwin and Lomax with and without an extension of Goldberg and Chakravarthy [1] for the determination of separated flow regions and the two equation kε model according to Kunz and Lakshminarayana [2, 3] are applied to compute the flow field of the diffuser on several operating points with the two-dimensional code. The three-dimensional solver in addition with the extended and unextended Baldwin-Lomax model has been applied to ascertain the three-dimensional flow field on the working point with the largest separation zone in the two-dimensional case. For comparison measured pressure distributions [4] of the examined operating points are presented likewise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

D,ε :

functions of the kε model

E :

total specific internal energy

\(\vec{E}\) :

flux vector in ξ-direction

f 2 ,f µ :

functions of the kε model

F Kleb :

Klebanoff intermittency function

F Wake :

wake function

\(\vec{F}\) :

flux vector in ŋ-direction

G :

Gaussian-distribution

J :

Jacobian

k :

turbulent kinetic energy(=k*/(p/ρ) * tot,∞ )

n :

wall distance

p :

static pressure (= p*/p * tot,∞ )

P :

production rate of k

Pr :

Prandtl-number

q :

Cartesian component of heat transfer

\(\vec{Q}\) :

vector of variables of state

r :

radius (= r*/r *DE )

r o :

impeller exit radius

Re :

Reynolds-number\(\left( ={{r}^{*}}DE\sqrt{\left( p\rho \right)_{tot,\infty }^{*}}/\mu _{l,\infty }^{*} \right)\)

R T :

local Reynolds-number

\(\vec{S}\) :

source term vector

t :

time \(\left( ={{t}^{*}}\sqrt{\left( p/\rho \right)_{tot,\infty }^{*}/r_{DE}^{*}} \right)\)

Tu :

turbulence rate

u :

velocity in x-direction \(\left( ={{u}^{*}}/\sqrt{\left( p/\rho \right)_{tot,\infty }^{*}} \right)\)

u i :

velocity related to i-direction

u s :

velocity-scale

U :

mean velocity at diffuser inlet

v :

velocity in y-direction (see u)

w :

velocity in z-direction (see u)

\(\vec{w}\) :

velocity vector

x,y,z :

Cartesian coordinates (related to r * DE )

x i :

Cartesian coordinate related to i-direction

δ ij :

Kronecker-symbol

ϵ :

dissipation rate of k

$$\left( ={{\varepsilon }^{*}}r_{DE}^{*}/{{\left[ \left( p/\rho \right)_{tot,\infty }^{*} \right]}^{1.5}} \right)$$
k :

isentropic coefficient

µ l :

dynamic viscosity (= (p/ρ)2/3)

µ t :

turbulent viscosity

w :

vorticity-scale

ρ :

density (= ρ*/ρ * tot,∞ )

τ ij :

Cartesian stress tensor component

τ w :

wall shear stress

ξ,ŋ,ς :

generalized curvilinear coordinates

ξ x , ŋ x ..:

partial derivatives ξ, ŋ,.. to x,y,..

:

density weighted value

:

time averaged value

+ :

modified value

*:

dimensionalized value

c :

inviscid

DE :

diffuser exit

i,j,k :

pointer related to x,y or z axis

v :

viscous

K :

suction duct upstream the compressor

tot :

total value

w :

wall

∞:

diffuser inlet

References

  1. Goldberg, U. C.; Chakravarthy, S. R.: Separated Flow Prediction Using a Hybrid k-L / Backflow Model. AIAA Journal, Vol. 28, NO. 6, Jun. 1990.

    Article  Google Scholar 

  2. Kunz, R.; Lakshminarayana, B.: Explicit Navier-Stokes Computation of Cascade Flows Using the k — e Turbulence Model. AIAA Journal, Vol. 30, NO. 1, Jan. 1992.

    Article  Google Scholar 

  3. Kunz, R.; Lakshminarayana, B.: Three-Dimensional Navier-Stokes Computation of Turbomachinery Flows Using an Explicit Numerical Procedure and a Coupled k — e Turbulence Model. ASME Paper 91-GT-146, 1991.

    Google Scholar 

  4. Jansen, M.: Untersuchungen an beschaufelten Diffusoren eines hochbelasteten Radialverdichters. Dissertation, Uni. Hannover, 1982.

    Google Scholar 

  5. Michelassi, V.; Liou, M.-S.; Povinelli, L.A.: Implicit Solution of Three-Dimensional Internal Turbulent Flows. NASA TM-103099, 1990.

    Google Scholar 

  6. Compton, W. B.; Abdol-Hamid, K. S.,Abeyounis, W. K.: Comparision of Algebraic Turbulence Models for Afterbody Flows with Jet Exhaust. AIAA Journal, Vol. 30, NO. 1, Nov. 1992.

    Google Scholar 

  7. Radespiel, R.: A Cell-Vertex Multigrid Method for the Navier-Stokes Equations. NASA TM-101557, 1989.

    Google Scholar 

  8. Jorgenson, P.; Turkel, E.: Central Difference TVD and TVB Schemes for Time Dependent and Steady State Problems. AIAA Paper 92–0053, 1992.

    Google Scholar 

  9. Jameson, A., Baker, T. J.: Solution of the Euler Equations for Complex Configurations. AIAA Paper 83–1929, 1983.

    Google Scholar 

  10. Arnone, A.; Liou, M. S.; Povinelli, L. A.: Multigrid Calculations of Three-Dimensional Viscous Cascade Flows. ICOMP-91–18, NASA TM 105257; 1991.

    Google Scholar 

  11. Jameson, A.: MAE Report 1651, 1984. Published in: Lecture Notes in Mathematics, Bd. 1127, S.156–242, Editor: F. Brezzi, Springer Verlag, 1985.

    Google Scholar 

  12. Leicher, S.: Numerical Solution of Internal and External Inviscid an Viscous 3-D Flow Fields. AGARD-CP-412, Vol. 1, 1986.

    Google Scholar 

  13. Baldwin, B. S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow. AIAA Paper 78–257, Jan. 1978.

    Google Scholar 

  14. Cebeci, T.,: Calculation of Compressible Turbulent Boundary Layers with Heat and Mass Transfer. AIAA Paper 70–741, 1970.

    Google Scholar 

  15. Chima, R.V.: Explicit Multigrid Algorithm for Quasi-Three-Dimensional Viscous Flows in Turbomachinery. Journal Propulsion, Bd. 3, Nr. 5, S. 397–405, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinrich, M., Teipel, I. (1998). Flow Simulation in an Aerodynamic Diffusor of a High Loaded Radial Compressor using Different Turbulence Models. In: Rath, H.J., Egbers, C. (eds) Advances in Fluid Mechanics and Turbomachinery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72157-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72157-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72159-5

  • Online ISBN: 978-3-642-72157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics