Advertisement

LIF-Diagnostics for the Investigation on the Chemical Structure of Diffusion Flames Burning Under Microgravity

  • J. König
  • Chr. Eigenbrod
  • H. J. Rath

Abstract

Laser induced fluorescence (LIF)- diagnostics has been developed for the use in microgravity combustion experiments in the Bremen Drop Tower. By means of an KrF-Excimer Laser as UV-excitation source, different LIF- and LIPF-diagnostic methods are beeing applied to investigate on the chemical structure of igniting and burning single fuel drenched porous spheres nonintrusively. The two-dimensional OH-radical concentration field, identifying the place and strength of reaction, was detected with a temporal resolution of 4ms. By means of an alternating fast wavelength switching, the temperature distribution in the vicinity of a reaction zone adjacent to a methanol drenched porous sphere was measured utilizing two line OH-LIPF.

Converting the laser wavelength of 248nm by means of Raman-shifters, the visualisation of important cool flame intermediates by LIF is under preparation for the use in microgravity experiments.

Keywords

Laser-induced fluorescence Chemically reacting flow Microgravity Droplet combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.K. Law, G.M. Faeth: “Opportunities and challanges of combustion in microgravity”, prog. energy and comb. sci., 20, 65, London (1994)Google Scholar
  2. 2.
    TANABE, M., KONO, M., SATO, J., KÖNIG, J., EIGENBROD, CH., RATH, H.J.,: Effects of Natural Convection on Two Stage Ignition of an nDodecane Droplet, 25th Symp.(Intl.) Comb., The Combustion Institute, Pittsburgh, 455 (1994)Google Scholar
  3. 3.
    Bachalo, W.D.:“Injection, dispersion, and combustion of liquid fuels, 25th Symp.(Intl.)Combustion, The Combustion Institute, 333 (1994)Google Scholar
  4. 4.
    Annamalai, K.; Ryan, W.:“Interactive processes in gasification and combustion. PartI: Liquid drop arrays and clouds”, Prog. Energy Comb. Sci, 18, 221, (1992)CrossRefGoogle Scholar
  5. 5.
    Eigenbrod, C., König, J., Bolik, T., Behrens, T., Dinkelacker, F., Rath, H.J., Albrecht, H., Müller, D., Schröder, T., Triebel, W.:“Development of an UV-laser Diagnostic System for Combustion Research under Zero-gravity at Drop Tower Bremen, 7th Int. Symp. Appl. of Laser Tech. to Fluid Mech., Lisboa (1994)Google Scholar
  6. 6.
    Eigenbrod, C., König, J., Bolik, T., Renken, H., and Rath, H.J.: First results from non-intrusive laser diagnostic system for combustion research at Bremen drop tower, Microgravity sci. technol. VII, 112: 134–136 (1995).Google Scholar
  7. 7.
    Kychakow, G., Howe, R.D., Hanson, R.K.: “Use of planar laser-induced fluorescence for the study of combustion flowfields, AIAA No.83–1361, Seattle (1983)Google Scholar
  8. 8.
    Kohse-Höinghaus, K.:“Laser techniques for the quantitative detection of reactive intermediates in combustion systems”, Prog. Energy Comb. Sci., 20, 203, London (1994)Google Scholar
  9. 9.
    König, J., Eigenbrod, C., Tanabe, M., Renken, H, Rath, H.J.: “Characterization of spherical hydrocarbon fuel flames: laser diagnosis of the chemical structure through the OH-radical, 26th int. symposium on combustion, Neapel (1996).Google Scholar
  10. 10.
    Renken, H., Bolik, T., Eigenbrod, C., König, J., Rath H.J.:“Two-dimensional UV-laserdiagnostic by high-speed imaging for microgravity combustion research at Bremen drop tower AIAA 97–0241, 35th Aerospace Sciences meeting and exhibit, Reno, (1997).Google Scholar
  11. 11.
    Grebner, D., Müller, D., Triebel, W.:“Fast wavelength switching of narrow-band excimer lasers”, Rev. Sci. Instrum., 68 (8), 2965, (1997)CrossRefGoogle Scholar
  12. 12.
    Arnold, A.:“Entwicklung von abstimmbaren Mehrfrequenz-Excimer-Lasern zur Bestimmung von Konzentrations- und Temperaturfeldern in turbulenten technischen Flammen”, Disserationsschrift, Heidelberg, 1992Google Scholar
  13. 13.
    Hinrichs, O.:“Zweidimensionale Temperaturfeldbestimmung an Methanoldiffusionsflammen in Mikrogravitationsexperimenten mittels 2-Linien OHLIPF”, Masterthesis, Bremen, (1997)Google Scholar
  14. 14.
    Dreier, T., Dreizier, A., Wolfrum, J.: “The application of a raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics”, Applied Physics B, 55, 381, (1992)CrossRefGoogle Scholar
  15. 15.
    Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. a.d. Bergh:“ Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers, Applied Optics, 36, 21, 5026, (1997)CrossRefGoogle Scholar
  16. 16.
    Bäuerle, B., Warnatz, J., Behrendt, F.:“Time-resolved investigation of hot spots in the end gas of an S.I. Engine by means of 2-D Double pulse LIF of formaldehyde, 26th Symp. (Intl.) on Comb., The Combustion Institute, Pittsburgh, 2619 (1996)Google Scholar
  17. 17.
    Müller, U.C., Peters, N.; Linan, A.:“Global kinetics for n-heptane ignition at high pressures”, 24th Symp. (Intl.) Comb., The Comb. Institute, Pittsburgh, 777 (1992)Google Scholar
  18. 18.
    Tanabe, M. Kono, M., Sato, J., König, J., Eigenbrod, C., Dinkelacker, F., Rath, H.J.,:“Two stage ignition of n-heptane isolated fuel droplets, Combust. Sci tech. 108: 103 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. König
    • 1
  • Chr. Eigenbrod
    • 1
  • H. J. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity, ZARMUniversity of BremenGermany

Personalised recommendations