Routes into Chaos in Rotating Fluid Flows

  • Christoph Egbers
  • Hans J. Rath


We report on a concurrent study on stability, bifurcation scenarios and routes into chaos in rotating fluids, i.e. Taylor Couette flow, spherical Couette flow and rotating annulus heated from within (Rossby tank). In contrast to the pitchfork bifurcation as the first instability in the cylindrical system the flow in the spherical gap flow bifurcates via different Hopf bifurcations into chaos. By increasing the Reynolds number with the angular velocity of the driving inner sphere the flow bifurcates from laminar axisymmetric basic flow to the periodic motion of nonaxisymmetric spiral waves for relative large aspect ratios. The spiral waves exist over a wide range of the Reynolds number. In this range a change in shape and periodicity can be detected by visualization with small aluminum flakes and also measured by Laser Doppler velocimetry (LDV-technique). At high Reynolds numbers, the flow undergoes a bifurcation to low-dimensional chaotic motion before it becomes turbulent. The dynamic behaviour of the rotating flows mentioned above is compared and discussed by time series analysis methods and by velocity bifurcation diagrams.


Reynolds Number Lyapunov Exponent Bifurcation Diagram Rossby Wave Chaotic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andereck, C.D., Liu, S.S. and Swinney, H.L. (1986): Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., vol. 164, 155–183CrossRefGoogle Scholar
  2. Belyaev, Yu.N., Monakhov, A.A., Scherbakov, S.A. and Yavorskaya, I.M. (1984): Some routes to turbulence in spherical Couette Flow. in: Kozlov,V. V. (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, SpringerGoogle Scholar
  3. Broomhead, D.S. & King, G.P. (1986): Physica D 20, 217CrossRefzbMATHMathSciNetGoogle Scholar
  4. Bühler, K. (1985): Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe7: Strömungstechnik Nr. 96Google Scholar
  5. Bühler, K. and Zierep, J. (1984): New secondary instabilities for high Re-number flow between two rotating spheres. in: Kozlov,V. V. (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  6. Bühler, K. and Zierep, J. (1986): Dynamical instabilities and transition to turbu lence in spherical gap flows. in: Comte-Bellot, G. and Mathieu, J.: Advan ces in turbulence. Proc. 1st Europ. Turb. Conf., Lyon, France, 1–4 July, Springer, Berlin,Heidelberg, NewYork,London, Paris, TokyoGoogle Scholar
  7. Buzug, Th. & Pfister, G. (1992): Physical Review A 45, 10CrossRefGoogle Scholar
  8. Buzug, Th., v. Stamm, J. and Pfister, G. (1992): Fractal dimensions of strange attractors obtained from the Taylor-Couette experiment. Phys.A, 191, 559CrossRefGoogle Scholar
  9. Buzug, Th., v. Stamm, J. and Pfister, G. (1993): Characterization of perioddoubling scenarios in Taylor- Couette flow. Physical Review E, 47, no. 2, 1054–1065CrossRefGoogle Scholar
  10. Eckmann, J.P. and Ruelle, D. (1992): Fundamental limitations for estimating di mensions and Lyapunov exponents in dynamical systems. Physica D 56Google Scholar
  11. Egbers, C. (1994): Zur Stabilität der Strömung im konzentrischen Kugelspalt. Dissertation, Universität BremenGoogle Scholar
  12. Egbers, C. and Rath, H.J. (1995): The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 3–4, 125–140CrossRefGoogle Scholar
  13. Egbers, C. & Rath, H.J. (1996): Developments in Laser Techniques and Applicati ons to Fluid Mechanics (Eds.: R.J. Adrian, D.F.G. Durao, F. Durst, M.V. Heitor, M. Maeda, J.H. Whitelaw), Springer,45–66Google Scholar
  14. Fechtmann, C., Wulf, P., Egbers, C. & Rath, H.J.; 1996; LDA-Messungen zum chaotischen Verhalten der Strömung im konzentrischen Kugelspalt; Lasermethoden in der Strömungsmeßtechnik, 5. Fachtagung der GALA, 11.-13. Sept. Berlin, vol. V, pp 17. 1–17. 7Google Scholar
  15. Fenstermacher, P.R., Swinney, H.L. and Gollub, J.P. (1979): Dynamic instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94, parti, 103–128Google Scholar
  16. Gollub, J.P. and Swinney, H.L. (1975): Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35Google Scholar
  17. Hide, R. and Mason, P.J. (1975): Sloping convection in a rotating fluid. Adv. Phys. 24, 47–100Google Scholar
  18. Holzfuss, J. (1987): Doctoral thesis, Universität GöttingenGoogle Scholar
  19. Landau, L.D. (1944): On the problem of turbulence. C. R. Acad. Sci. USSR 44, 311Google Scholar
  20. Liu, M., Blohm, C., Egbers, C., Wulf, P. and Rath, H. J. (1996): Taylor vortices iwide spherical shells.; Phys. Rev. Lett., vol. 77, No. 2, pp 286–289CrossRefGoogle Scholar
  21. Marcus, P.S. (1988): Numerical simulation of Jupitor’s Great Red Spot. Nature 338, 693–696CrossRefGoogle Scholar
  22. Mullin, T. (1993): The nature of chaos, Oxford Science PublicationsGoogle Scholar
  23. Munson, B.R. and Menguturk, M. (1975): Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech., vol. 69, 705–719Google Scholar
  24. Nakabayashi, K. and Tsuchida,Y. (1988): Spectral study of the laminar-turbulent transition in spherical Couette flow. J. Fluid Mech., vol. 194, 101–132CrossRefGoogle Scholar
  25. Newhouse, S., Rouelle, D. Taken, F. (1978) Occurence of strange axiom attractors near quasiperiodic flow on Tm, m?3, Commun. Math, Phys. 64Google Scholar
  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1994): Numerical recipes in C, Cambridge Univ. PressGoogle Scholar
  27. Rouelle, D. and Takens, F. (1971): On the nature of turbulence. Commun. Math. Phys. 20, 167–192CrossRefGoogle Scholar
  28. Sawatzki, O. und Zierep, J. (1970): Das Stromfeld im Spaltzwischen zwei konzentrischen Kugelfl„chen, von denen die innere rotiert. Acta Mech. 9, 13–35CrossRefGoogle Scholar
  29. v. Stamm, J.,Buzug,Th. and Pfister,G. (1993): Frequency locking in axisymmetric Taylor-Couette flow. submitted to Physical Review E.Google Scholar
  30. Takens, F. (1980): Lecture Notes in Mathematics, 898, SpringerGoogle Scholar
  31. Taylor, G.J. (1923): Stability of a viscous liquid contained between two rotating cylinders. Phil.Trans. A223, 289–293CrossRefzbMATHGoogle Scholar
  32. Wimmer, M. (1981): Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech., vol. 103, 117–131CrossRefGoogle Scholar
  33. Wulf, P., Egbers, C. and Rath, H.J. (1997): Routes to chaos in wide gap spherical Couette flow. Phys. of Fluids, submittedGoogle Scholar
  34. Yavorskaya, I.M., Belyaev, Yu.N. and Monakhov, A.A. (1975): Experimental study of a spherical Couette flow. Soy. Phys. Dokl., vol. 20, 4, 256–258Google Scholar
  35. Yavorskaya, I.M., Belyaev,Yu.N., Monakhov, A.A., Astafeva, N.M, Scherbakov, S.A. and Vvedenskaya, N.D. (1980): Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. IUTAMSymposium, TorontoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Christoph Egbers
    • 1
  • Hans J. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany

Personalised recommendations