Advertisement

Macrophage Depletion in Small Animal Transplant Models

  • J. Fryer
  • J. Leventhal
  • R. Zhong

Abstract

As our knowledge of the immunology of organ transplantation grows, cell types other than the T lymphocyte have been identified as playing important roles. Recently, macrophages have been drawing increasing recognition as important players in both the afferent and efferent arms of the immune response.

Keywords

Mesenteric Lymph Node Bacterial Translocation Intestinal Transplantation Small Bowel Transplantation Distal Small Bowel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10:958–979PubMedCrossRefGoogle Scholar
  2. 2.
    Fryer JP, Grant D, Jiang J, Metrakos P, Ozcay N, Ford C, Garcia B, Behme R, Zhong R (1996) The influence of macrophage depletion on bacterial translocation and rejection in small bowel transplantation. Transplantation 62:553–559PubMedCrossRefGoogle Scholar
  3. 3.
    Kalff JC, Cicalese L, Exner B, Schraut WH, Bauer AJ (1996) Immunocyte infiltration of the graft muscularis and its effect on muscle function during acute rejection of rat small intestinal allografts. Transplant Proc 28(5):2459Google Scholar
  4. 4.
    Asfar S, Zhong R, Grant D (1994) Small bowel transplantation. Surg Clin North Am 74(5):1197–1210PubMedGoogle Scholar
  5. 5.
    Green M, Reyes J, Nour B, Tzakis A, Todo S (1994) Early infectious complications of liver-intestinal transplantation in children: preliminary analysis. Transplant Proc 26(3): 1420–1421PubMedGoogle Scholar
  6. 6.
    Abu-Elmagd K, Todo S, Tzakis A, Furukawa H, Bonet H, Mohamed H, Nour B, Reyes J, Green M, Manez R et al (1994) Intestinal transplantation and bacterial overgrowth in humans. Transplant Proc 26(3):1684–1685PubMedGoogle Scholar
  7. 7.
    Baker JW, Deitch EA, Li M, Berg RD (1988) Specian RD. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28:896–906PubMedCrossRefGoogle Scholar
  8. 8.
    Velasco AL, Chung RK, McGowan KL, Steigman CK, Ziegler MM (1989) Bacterial translocation after small intestinal transplantation. Surg Forum 40:579–581Google Scholar
  9. 9.
    Grant D, Hurlbut D, Zhong R, Wang PZ, Chen HF, Garcia B, Behme R, Stiller C, Duff J (1991) Intestinal permeability and bacterial translocation following small bowel transplantation in the rat. Transplantation 52:224CrossRefGoogle Scholar
  10. 10.
    Mora EM, Cardonna MA, Simmons RL (1991) Enteric bacteria and ingested inert particles translocate to intraperitoneal prosthetic material. Arch Surg 126:157–163PubMedCrossRefGoogle Scholar
  11. 11.
    Nieuwenhuijzen GAP, Haskel Y, Lu Q, Berg RD, van Rooijen N, Goris RJA, Deitch EA (1993) Macrophage elimination increases bacterial translocation and gut origin septicemia but attenuates symptoms and mortality rate in a model of systemic inflammation. Ann Surg 218(6):791–799PubMedCrossRefGoogle Scholar
  12. 12.
    Hansman ML, Deltz E, Gundlach M, Schroeder P, Radzun HJ (1989) Small bowel transplantation in a child. Morphologic, immunohistochemical and clinical results. Am J Clin Pathol 92:686–692Google Scholar
  13. 13.
    Cerf-Bensussan N, Brousse N, Jarry A, Goulet O, Revillon Y, Ricour C, Guy-Grund D (1990) Role of in vivo activated T cells in the mechanisms of villous atrophy in humans: study of allograft rejection. Digestion 46 [Suppl 2]:297–302PubMedCrossRefGoogle Scholar
  14. 14.
    Li X, Tucker J, Zhong R, Jevnikar A, Grant D (1994) The role of gut-associated lymphoid tissue in intestinal rejection — allogeneic response to rat intestinal lymphocytes. Transplantation 56(1):244–247Google Scholar
  15. 15.
    Fryer JP, Leventhal JR, Dalmasso AP, Chen S, Simone PA, Goswitz JJ, Reinsmoen NL, Matas AJ (1995) Beyond hyperacute rejection: accelerated rejection in a discordant xenograft model by adoptive transfer of specific cell subsets. Transplantation 59:171–176PubMedGoogle Scholar
  16. 16.
    Hancock WW, Bach FB (1994) The immunopathology of discordant xenograft rejection. Xeno 1994:2(4):68Google Scholar
  17. 17.
    Leventhal JR, Matas AJ, Sun LH, Reif S, Bolman RM, Dalmasso AP, Platt JL (1993) The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation 56:1–10PubMedCrossRefGoogle Scholar
  18. 18.
    Fryer JP, Leventhal JR, Dalmasso AP, Chen S, Simone PA, Jessurun J, Sun LH, Reinsmoen NL, Matas AJ (1994) Cellular rejection in discordant xenografts when hyperacute rejection is prevented: analysis using adoptive and passive transfer. Trans Immunol 2:87–93CrossRefGoogle Scholar
  19. 19.
    Pruitt SK, Kirk AD, Bollinger RR, Marsh HC, Collins BH, Levin JL, Mault JR, Heinle JS, Ibrahim S, Rudolph AR (1994) The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 57(3):363–370PubMedCrossRefGoogle Scholar
  20. 20.
    Blakely ML, Van der Werf WJ, Dalmasso AP, Bach FH (1994) Anti-B cell agents: suppression of natural antibodies and prolongation of survival in discordant xenografts. Transplant Proc 26(3):1374–1375PubMedGoogle Scholar
  21. 21.
    Inverardi L, Samaja M, Motterlini R, Mangili F, Bender JR, Pardi R (1992) Early recognition of a discordant xenogeneic organ by human circulating lymphocytes. J Immunol 149:1416PubMedGoogle Scholar
  22. 22.
    Van Rooijen N (1989) The liposome-mediated macrophage “suicide” technique. J Immunol Methods 124:1–6PubMedCrossRefGoogle Scholar
  23. 23.
    Li XC, Zhong R, Quan D, Almawi W, Jevnikar A, Grant DR (1994) Endotoxin in the peripheral blood during acute intestinal allograft rejection. Transplantation Int 7(3):223–226CrossRefGoogle Scholar
  24. 24.
    Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thoracic Cardiovasc Surg 57:225Google Scholar
  25. 25.
    Garcia B, Zhong R, Wijsman J, Wang P, Chen H, Sutherland F, Duff J, Grant D (1990) Pathological changes following intestinal transplantation in the rat. Transplant Proc 22:2469PubMedGoogle Scholar
  26. 26.
    Biffi R, Privitera G, Andreoni B, Matinato C, Pozzi S, Marzona L, De Rai P, Trivella M, Ferrario L, Montagnolo G, Della Morte M, Tiberio G (1994) Bacterial translocation in pigs give cyclosporine or 15-deoxyspergualin after small bowel allografts — comparison with autotransplanted animal. Transplant Proc 26:1686–1687PubMedGoogle Scholar
  27. 27.
    Fryer JP, Kim S, Wells C, Fasola C, Jechorek R, Dunn D, Pirenne J, Arazola L, Gruessner RWG (1996) Bacterial translocation in a large animal model of small bowel transplantation: portal vs systemic drainage and the effect of FK506 immunosuppression. Arch Surg 131(1):77–84PubMedCrossRefGoogle Scholar
  28. 28.
    Celada A, Nathan C (1994) Macrophage activation revisited. Immunol Today 15(3): 100–102PubMedCrossRefGoogle Scholar
  29. 29.
    Langrehr JM, White DA, Hoffman RA, Simmons RL (1993) Macrophages produce nitric oxide at allograft sites. Ann Surg 218(2):159–166PubMedCrossRefGoogle Scholar
  30. 30.
    Aliprantis AO, Diez-Roux G, Mulder LC, Zychlinsky A, Lang RA (1996) Do macrophages kill through apoptosis? Immunol Today 17(12):573–576PubMedCrossRefGoogle Scholar
  31. 31.
    Baldwin WM, Pruitt SK, Brauer RB, Daha MR, Sanfilippo F (1995) Complement in organ transplantation. Transplantation 59:797–808PubMedGoogle Scholar
  32. 32.
    Martin JH, Edwards SW (1993) Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J Immunol 150:3478–3486PubMedGoogle Scholar
  33. 33.
    Millan MT, Ferran C, Stuhlmeier KM, Geczy C, Bach FH (1995) Human monocytes activate porcine aortic endothelial cells and may potentiate transplantation rejection in this species combination. Surg Forum 46:392–395Google Scholar
  34. 34.
    Worral NK, Lazenby WD, Misko TP, Lin TS, Rodi CP, Manning PT, Tilton RG, Williamson JR, Ferguson TB (1995) Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 181:63–70CrossRefGoogle Scholar
  35. 35.
    Huitinga I, Damoiseaux JG, van Rooijen N, Dopp EA, Dijkstra CD (1992) Liposome mediated affection of monocytes. Immunobiology 185:11–19PubMedCrossRefGoogle Scholar
  36. 36.
    Dijkstra CD, Dopp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. Fryer
  • J. Leventhal
  • R. Zhong

There are no affiliations available

Personalised recommendations