Skip to main content

The Use of Rat Heterotopic Heart Transplantation Models to Characterize the Immunosuppressive Activities of Leflunomide

  • Chapter
Organtransplantation in Rats and Mice
  • 282 Accesses

Abstract

Leflunomide [Lef: N-(4-trifluoro-methyphenyl)-5-methylisoxazole-4-carbox-amidel] is a pro-drug with immunomodulatory activities that were initially described in experimental models of autoimmune disease, and subsequently in models of allograft and xenograft rejection (reviewed in [1, 2]). Leflunomide is an isoxazole derivative that is rapidly metabolized to the active metabolite, A77 1726 [2 cyano-3-hydroxy-N-(4-trifluoromethylphenyl)butenamide)], in the intestinal mucosa or liver. A77 1726 belongs to a class of compounds, classified as malononitriloamides, that are structurally unrelated to other known immunosuppressive agents. In vitro studies indicate that A77 1726 inhibits the proliferation of T cells and B cells as well as other cell types [1]. In addition, A77 1726 inhibits the expression of cytotoxic activity by T cells and IgG production by B cells in vitro [3,4]. Biochemical studies have described at least two activities of A77 1726 [4–7]: inhibition of the enzymatic activities of selected protein tyrosine kinases and inhibition of dihydroorotate dehydrogenase, the fourth enzyme in the biosynthesis of pyrimidine nucleotides. Recent studies performed by our group indicate that both these activities should be monitored and that both contribute to the immunosuppressive activity of Lef in vivo [3, 4, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett RR, Dimitrijevic M, Mattar T, Zielinski T, Germann T, Rüde E, et al (1991) Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of autoimmune disorders and reactions leading to transplantation rejection. Agents Actions 32:10–21

    Article  PubMed  CAS  Google Scholar 

  2. Silva H, Morris R (1997) Leflunomide and malonitriloamides. Exp Opin Invest Drugs 6:51–64

    Article  CAS  Google Scholar 

  3. Seimasko K, Chong A, Jack H-M, Xu X, Gong H, Williams J, et al (1998) The immunosuppressive agent, leflunomide, inhibits immunoglobulin production by two independent mechansims. J Immunol (in press)zzz

    Google Scholar 

  4. Elder R, Xu X, Williams J, Gong H, Finnegan A, Chong A-F (1997) The immunosuppressive drug metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J Immunol 159:22–27

    PubMed  CAS  Google Scholar 

  5. Xu X, Williams J, Bremer E, Finnegan A, Chong A (1995) Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J Biol Chem 270:123898–12403

    Google Scholar 

  6. Williamson R, Yea C, Robson P, Curnock A, Gadher S, Hambleton A, et al (1995) Dihydroorotate dehydrogenase is a high-affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol Chem 270:22467–22472

    Article  PubMed  CAS  Google Scholar 

  7. Greene S, Watanabe K, Braatz-Trulson J, Lou L (1995) Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol 50:861–867

    Article  PubMed  CAS  Google Scholar 

  8. Xu X, Blinder L, Gong H, Shen J, Finnegan A, Williams, J et al (1997) In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in MRL/MpJ-lpr/lpr mice. J Immunol 159:167–174

    PubMed  CAS  Google Scholar 

  9. Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thoracic Cardiovasc Surg 57:225–229

    CAS  Google Scholar 

  10. Muller GH (1990) Heart transplantation model as an immunological monitor. Microsurgery 11:122–126

    Article  PubMed  CAS  Google Scholar 

  11. Küchle CCA, Thoenes GH, Langer KH, Schlorlemmer HU, Bartlett RR, Schleyerbach R (1991) Prevention of kidney and skin graft in rats by leflunomide, a new immunomodulating agent. Transplant Proc 23:1083–1086

    PubMed  Google Scholar 

  12. Williams JW, Xiao F, Foster P, Clardy C, McChesney L, Sankary H, et al (1994) Leflunomide in experimental transplantation: control of rejection and alloantibody production, reversal of acute rejection and interaction with cyclosporine. Transplantation 57:1223–1231

    Article  PubMed  CAS  Google Scholar 

  13. D’Silva M, Candinas D, Achilleos O, Lee S, Antoniou E, DeRoover A, et al (1995) The immunomodulatory effect of leflunomide in rat cardiac allotransplantation. Transplantation 60:430–437

    Article  PubMed  Google Scholar 

  14. Orosz CG, Wakely ME, Sedmak DD, Birmingham DJ, Ohye RG, Van Buskirk AM (1997) Prolonged murine cardiac allograft acceptance: characteristics of persistent active alloimmunity after treatment with gallium nitrate vs anti-CD4 mAb. Transplantation 63:1109–1117

    Article  PubMed  CAS  Google Scholar 

  15. Dahmen U, Bergese S, Qian S, Pelletier R, Wu H, Sedmak D, et al (1995) Patterns of inflammatory vascular endothelial changes in murine liver grafts. Transplantation 60:577–584

    Article  PubMed  CAS  Google Scholar 

  16. Russel P, Chase C, Winn H, Colvin R (1994) Coronary atherosclerosis in transplanted mouse hearts. I. Time course and immunogenetic and immunopathological considerations. Am J Pathol 144:260–274

    Google Scholar 

  17. Xiao F, Chong A, Foster PF, Sankary HN, McChesney L, Koukoulis G, et al (1994) Leflunomide controls rejection in hamster to rat cardiac xenografts. Transplantation 58:828–834

    PubMed  CAS  Google Scholar 

  18. Azuma H, Tilney N (1994) Chronic graft rejection. Curr Opin Immunol 6:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Billingham W (1992) Histopathology of graft coronary disease. J Heart Lung Transpl 11:538

    Google Scholar 

  20. Mennander A, Tiisala S, Halttunen J, Yilmaz S, Paavonen T, Pekka H (1991) Chronic rejection in rat aortic allografts. An experimental model for transplant arteriosclerosis. Arterioscler Thromb 11:671–680

    Article  PubMed  CAS  Google Scholar 

  21. Adams D, Wyner L, Karnovsky M (1993) Experimental graft arteriosclerosis. II. Immunocytochemical analysis of lesion development. Transplantation 56:794–799

    Article  PubMed  CAS  Google Scholar 

  22. Adams D, Tilney N, Collins J, Karnovsky M (1992) Experimental graft arteriosclerosis. I. The Lewis-to-F-344 allograft model. Transplantation 53:1115–1119

    Article  PubMed  CAS  Google Scholar 

  23. Adams D, Russel M, Hancock W, Sayegh M, Wyner L, Karnovsky M (1993) Chronic rejection in experimental cardiac transplantation: studies in the Lewis-F344 model. Immunol Rev 134:6–19

    Article  Google Scholar 

  24. Xiao F, Shen J, Chong A, Foster P, Sankary H, McChesney L, et al (1995) Pharmacologically induced regression of chronic transplant rejection. Transplantation 60:1065–1072

    Article  PubMed  CAS  Google Scholar 

  25. Morris R, Juang X, Gregory C, Billingham M, Rowan R, Shorthouse R, et al (1995) Studies in experimental models of chronic rejection: use of rapamycin (sirolimus) and isoxazole derivatives (leflunomide and its analogue) for the suppression of graft vascular disease and obliterative bronchiolitis. Transplant Proc 27:2068–2069

    PubMed  CAS  Google Scholar 

  26. MacDonald A, Sabr K, MacAuley M, McAlister V, Bitter-Suermann H, Lee T (1994) Effects of leflunomide and cyclosporine on aortic allograft chronic rejection in the rat. Transplant Proc 26:3244–3245

    PubMed  CAS  Google Scholar 

  27. Swan S, Crary G, Guijarro C, O’Donnell M, Keane W, Kasiske B (1995) Immunosuppressive effects of leflunomide in experimental chronic vascular rejection. Transplantation 60:887–890

    PubMed  CAS  Google Scholar 

  28. Nair R, Morris R (1996) The antiproliferative effect of leflunomide on vascular smooth muscle cells in vitro is mediated by selective inhibition of pyrimidine biosynthesis. Transplant Proc 28:3081

    PubMed  CAS  Google Scholar 

  29. Pruitt S, Baldwin WI, Marsh HJ (1991) The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 52:868–873

    Article  PubMed  CAS  Google Scholar 

  30. Pruitt SK, Baldwin WM, Barth RN, Sanfilippo F (1993) The effect of xenoreactive antibody and B-cell depletion on hyperacute rejection of guinea pig-to-rat cardiac xenografts. Transplantation 56:1318–1324

    Article  PubMed  CAS  Google Scholar 

  31. Leventhal J, Matas A, Sun L, Reif S, Bolman R, Dalmasso A, et al (1993) The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation 56:1–8

    Article  PubMed  CAS  Google Scholar 

  32. Brauer RB, Baldwin WM, Ibrahim S, Sanfillippo F (1995) The contribution of terminal complement components to acute and hyperacute rejection in the rat. Transplantation 59:288–293

    PubMed  CAS  Google Scholar 

  33. Braidley P, White D (1994) Concordant organ xenotransplantation. Xeno 2:25–30

    Google Scholar 

  34. Nielsen B, Lillevang ST, Salomon S, Steinbrüchel DA, Kemp E (1994) Hamster hearts transplanted to normal lewis rats and RNU/RNU rats (nude rats) are rejected at the same tempo but by different mechanisms. Transplant Proc 26:1189–1190

    PubMed  CAS  Google Scholar 

  35. Steinbrüchel D, Nielsen B, Kemp E (1994) Anti-CD4 monoclonal antibody treatment in combination with total lymphoid irradiation and cyclosporin A in hamster-to-rat cardiac transplantation. APMIS 102:777–785

    Article  PubMed  Google Scholar 

  36. Steinbrüchel D, Nielsen B, Kemp E (1994) Treatment of hamster heart to rat xenotransplantation. Transplant Immunol 2:3–9

    Article  Google Scholar 

  37. Murase N, Starzl TE, Demetris DJ, Valvida L, Tanabe M, Cramer D, et al (1993) Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. Transplantation 55:701–708

    Article  PubMed  CAS  Google Scholar 

  38. Seimasko K, Chong A, Williams J, Bremer E, Finnegan A (1995) Regulation of B cell function by the immunosuppressive agent, leflunomide. Transplantation 61:635–642

    Article  Google Scholar 

  39. Shen J, Xiao F, Liu W, Chong AS-F, Huang W, Foster P, et al (1997) Pathologic comparison and pharmacologic control of chronic rejection in allogeneic and xenogeneic heart transplantation. Transplantation (submitted)

    Google Scholar 

  40. Lin Y, Vandeputte M, Waer M (1995) Effect of leflunomide and cyclosporine on the occurrence of chronic xenograft lesions. Kidney Int [Suppl] 52:S23–28

    CAS  Google Scholar 

  41. Kemp E, Dieperink H, Jensen J, Kemp G, Kunlmann I-L, Larsen S, et al (1994) Newer immunosuppressive drugs in concordant xenografting — transplantation of hamster heart to rat.l Xenotransplantation 1:102–108

    Article  Google Scholar 

  42. Lin, Y, Sobis H, Vandeputte M, Waer M (1994) Induction therapy of leflunomide and cyclosporine allows for long-term xenograft survival under cyclosporine alone. Transplant Proc 26:3052

    PubMed  CAS  Google Scholar 

  43. Lin Y, Sobis H, Vandeputte M, Waer M (1994) Long-term xenograft survival and suppression of xenoantibody formation in the hamster-to-rat heart transplant model using a combination therapy of leflunomide and cyclosporine. Transplant Proc 26:3202

    PubMed  CAS  Google Scholar 

  44. Chong AS-F, Shen J, Xiao F, Blinder L, Liu W, Sankary H, et al (1996) Delayed xenograft rejection in the concordant hamster heart into Lewis rat model. Transplantation 62:90–96

    Article  PubMed  CAS  Google Scholar 

  45. Chong AS-F, Ma LL, Shen J, Blinder L, Yin D, Williams J (1997) Modification of humoral responses in Lewis rats to hamster heart xenografts by the combination of leflunomide and cyclosporine. Transplantation 64:1650–1657

    Article  PubMed  CAS  Google Scholar 

  46. Hasan R, van den Bogaerde JB, Wallwork J, White DJG (1992) Evidence that long-term survival of concordant xenografts is achieved by inhibition of anti-species antibody production. Transplantation 54:408–413

    Article  PubMed  CAS  Google Scholar 

  47. Hasan R, Sriwatanawongsa V, Wallwork J, White D (1993) Consistent prolonged “concordant” survival of hamster-to-rat cardiac xenografts by inhibition of anti-species antibodies with methotrexate. Transplant Proc 25:421–422

    PubMed  CAS  Google Scholar 

  48. Hancock W, Miyatake T, Koyamada N, Soares M, Bach F (1997) Not all protocols resulting in long-term graft survival induce accommodation: possible significance of antibody-induced protective genes in xenotransplantation. Abstracts of the 16th annual meeting of the American Society of Transplant Physicians, abstract 628:241

    Google Scholar 

  49. Johnson C, Andersson A, Bersztel A, Karlsson-Parra A, Gannedahl G, Tufveson G (1997) Successful retransplantion of mouse-to-rat cardiac xenografts under immunosuppressive monotherapy with cyclosporine. Transplantation 63:652–656

    Article  Google Scholar 

  50. Tanaka M, Murase N, Nomoto M, Demetris A, Todo S, Starzl T (1996) Tacrolimus (FK506)-dependent tolerance after liver and heart xenotransplantation: inhibition of humoral response and acceptance of donor organs. Transplant Proc 28:679–680

    PubMed  CAS  Google Scholar 

  51. Lin Y, Vandeputte M, Waer M (1996) Effect of leflunomide on T-independent xenoantibody formation in rats receiving hamster heart xenografts. Transpl Proc 28:952

    CAS  Google Scholar 

  52. Lin Y, Sobis H, Vandeputte M, Waer M (1995) Mechanism of leflunomide-induced prevention of xenoantibody formation and xenograft rejection in the hamster to rat heart transplantation model. Transplant Proc 27:305–306

    PubMed  CAS  Google Scholar 

  53. Lin Y, Vandeputte M, Waer M (1996) Mechanisms involved in long-term hamster-to-rat cardiac xenograft survival. Transplant Proc 28:683

    PubMed  CAS  Google Scholar 

  54. Hechenleitner P, Mark W, Candinas D, Miyatake T, Koyamada N, Hancock W, et al (1996) Protective genes expressed in endothelial cells of second hamster heart transplants to rats carrying an accommodated first graft. Xenotransplantation 3:279–286

    Article  Google Scholar 

  55. Hasan R, Sriwatanawongsa V, Wallwork J, White D (1994) Xenograft adaptation in hamster-to-rat cardiac xenografts. Transplant Proc 26:1282–1283

    PubMed  CAS  Google Scholar 

  56. Hasan R, van den Bogaerde J, Forty J, Wright L, Wallwork L, White DJG (1992) Xenograft adaptation is dependent on the presence of antispecies antibody, not prolonged residence in the recipient. Transplant Proc 24:531–532

    PubMed  CAS  Google Scholar 

  57. Bach F, Ferran C, Hechenleitner P, Mark W, Koyomada N, Miyatake T, et al (1997) Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 3:196–204

    Article  PubMed  CAS  Google Scholar 

  58. Mladenovic V, Domljan Z, Rozman B, Jajic I, Mihajlovic D, Dordevic J, et al (1995) Safetly and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Arthritis Rheum 38:1595–1603

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chong, A.SF., Shen, JK., Yin, DP., Williams, J.W. (1998). The Use of Rat Heterotopic Heart Transplantation Models to Characterize the Immunosuppressive Activities of Leflunomide. In: Timmermann, W., Gassel, HJ., Ulrichs, K., Zhong, R., Thiede, A. (eds) Organtransplantation in Rats and Mice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72140-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72140-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72142-7

  • Online ISBN: 978-3-642-72140-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics