Advertisement

Transmyocardial Laser Revascularisation: Are New Approaches with New Lasers Possible?

  • M. M. Ivanenko
  • P. Hering
  • M. Klein
  • E. Gams

Abstract

The purpose of this article is to briefly describe the main physical mechanisms of laser ablation of biological tissues and to analyse the prospects of new laser systems for transmyocardial laser revascularisation (TMLR).

Keywords

Thermal Damage Light Guide Soft Biological Tissue XeCI Laser Ablation Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moosdorf R, Schoebel FC, Hort W (1997) Transmyokardiale Laserrevaskularisation - morphologische, pathophysiologische und historische Grundlagen der indirekten Revaskularisation des Herzmuskels. Z Kardiol 86:149–164PubMedCrossRefGoogle Scholar
  2. 2.
    Nagele H, Kalmar P, Lubeck M, et al (1997) Transmyokardiale Laserrevaskularisation - Behandlungsoption der koronaren Herzerkrankung? Z Kardiol 86:171–178PubMedCrossRefGoogle Scholar
  3. 3.
    Kohmoto T, Fisher PE, Gu A, et al (1997) Physiology, histology, and 2-week morphology of acute transmyocardial channels made with a CO2 laser. Ann Thorac Surg 63:1275–1283PubMedCrossRefGoogle Scholar
  4. 4.
    Kim CB, Kesten R, Javier M, et al (1997) Percutaneous method of laser transmyocardial revascularization. Cathet Cardiovasc Diagn 40:223–228PubMedCrossRefGoogle Scholar
  5. 5.
    Jansen ED, Frenz M, Kadipasaoglu KA, et al (1997) Laser-tissue interaction during transmyocardial laser revascularization. Ann Thorac Surg 63:640–647PubMedCrossRefGoogle Scholar
  6. 6.
    Müller G (1997) TMLR - eine Frage des richtigen Lichtes? Oral report at 1st Düsseldorfer TMLR-Symposium, May 16–17Google Scholar
  7. 7.
    Müller G, Dörschel K (1995) Grundlagen und Anwendungen der Photoablation am Herzmuskelgewebe. In: Krabatsch, Hetzer (eds) Transmyokardiale Laserrevaskularisation: Stand und Ausblicke. Symposium Deutsches Herzzentrum Berlin. Ecomed, Landsberg/Lech, pp 15–20Google Scholar
  8. 8.
    Maas D (1995) TMLR bei koronarer Herzkrankheit - Indikationen, operative Technik und Taktik, klinische Resultate bei 152 Patienten. In: Krabatsch, Hetzer (eds) Transmyokardiale Laserrevaskularisation: Stand und Ausblicke. Symposium Deutsches Herzzentrum Berlin. Ecomed, Landsberg/Lech, pp 21–42Google Scholar
  9. 9.
    Sachinopoulou A, Verdaasdonk R, Rudolf M, Beek J (1996) Comparison of ablation channels created by the ultrapulsed CO2 laser, holmium laser, and 308-nm excimer laser in view of transmyocardial revascularization. Lasers in Surgery. Proc SPIE 2671:42–47CrossRefGoogle Scholar
  10. 10.
    Kohmoto T, Uzun G, Gu A, et al (1997) Blood flow capacity via direct acute myocardial revascularization. Basic Res Cardiol 92:45–51PubMedGoogle Scholar
  11. 11.
    deGuzman BJ, Lautz DB, Chen FY, et al (1997) Thorascopic Transmyocardial Laser Revascularization. Ann Thorac Surg 64:171–174PubMedCrossRefGoogle Scholar
  12. 12.
    Niemz MH (1996) Laser-tissue interactions. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Roggan A (1997) Dosimetrie thermischer Laseranwendungen in der Medizin. Fortschritte in der Lasermedizin, vol 16. Müller, Berlien (eds). Ecomed, Landsberg/LechGoogle Scholar
  14. 14.
    Tuchin VV (1993) Lasers and fiber optics in biomedicine. Laser Physics 3:767–820Google Scholar
  15. 15.
    Cheong W-F (1995) Summary of optical properties. In: Welch AJ, vanGemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York London, pp 275–303Google Scholar
  16. 16.
    Alimpiev SS, Artjushenko VG, Butvina LN, et al (1988) Polycrystalline IR fibers for laser scalpels. Proc SPIE 906:183–190Google Scholar
  17. 17.
    Kubo U, Hashishin Y, Okada K (1988) Optical beam guides for medical CO2 and excimer lasers. Proc SPIE 906:214–219Google Scholar
  18. 18.
    Lademann J, Thieme W, Babucke H, Steffen H, Koch H (1992) Application of mini TEA CO2 laser in neurosurgery. In: Waidelich, Wilhelm (eds) Laser in der Medizin: Vorträge des 10. Internationalen Kongresses Laser 91. Springer, Berlin, pp 206–209Google Scholar
  19. 19.
    Vogler K, Reidl M (1996) Improved erbium laser parameters for new medical applications. Biophotonics Int 6:40–47Google Scholar
  20. 20.
    Abel T, Hirsch J, Harrington J (1994) Hollow glass waveguides for broadband infrared transmission. Optics Letts 19:1034–1036CrossRefGoogle Scholar
  21. 21.
    Osawa M, Kato Y, Watanabe T, et al (1995) Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method. Optics Laser Technol 27:393–396CrossRefGoogle Scholar
  22. 22.
    Klein S, Meister J, Diemer S, Jung R, Fuß W, Hering P (1997) High-power laser wave- guide with a circulating liquid core for IR applications. Proc SPIE 2977:155–163CrossRefGoogle Scholar
  23. 23.
    Meister J, Diemer S, Jung R, Klein S, Haisch S, Fuß W, Hering P (1997) Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range. Proc SPIE 2977:58–66CrossRefGoogle Scholar
  24. 24.
    Diemer S, Meister J, Jung R, Klein S, Haisch M, Fuß W, Hering P (1997) Liquid-core light guides for near-infrared applications. Appl Optics 36:9075–9082CrossRefGoogle Scholar
  25. 25.
    Fuß W, Göthel J, Ivanenko M, Kompa KL, Schmid WE (1992) Multiwavelength Q-switched CO2 laser with continuous discharge. Appl Phys [B] 55:65–70Google Scholar
  26. 26.
    Ivanenko MM, Hering P (1998) Wet bone ablation with mechanically Q-switched high-repetition-rate CO2 laser. Appl Phys [B] (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. M. Ivanenko
  • P. Hering
  • M. Klein
  • E. Gams

There are no affiliations available

Personalised recommendations