Skip to main content

Use of transient expression in plants for the study of the “gene-for-gene” interaction

  • Conference paper
Cellular Integration of Signalling Pathways in Plant Development

Part of the book series: NATO ASI Series ((ASIH,volume 104))

  • 172 Accesses

Abstract

One of the common responses in disease resistance defined by the “gene-for-gene” interaction is the hypersensitive response (HR), which is a rapid and localized cell death of plants at the site of infection. This specific cell death was used to develop a biolistic transient expression assay for the resistance response. If the transiently expressed gene causes the HR, the expression level of a cointroduced reporter gene decreases due to the rapid death of the cell. Using this assay, it was shown that expression of the Pseudomonas syringae avirulence genes, avrRpt2 or avrB, in Arabidopsis thaliana can elicit the HR when the plants carry the corresponding resistance gene, RPS2 or RPM1, respectively. This indicates that the avirulence genes are the only bacterial factors that are required to elicit the specific resistance response as long as the avirulence gene products are localized properly. This observation and others strongly suggest that the molecular recognition of pathogen attack occurs inside of plant cells for these combinations of avirulence gene and resistance gene. RPS2 and RPM1 are members of NBS-LRR class of resistance genes. NBS-LRR proteins could be cytoplasmic receptors for specific signal molecules from avirulent pathogens. We propose a speculative model to view different classes of resistance gene products from a unified perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerveken, G. v. d., E. Marois, and U. Bonas. 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307–1316.

    Article  PubMed  Google Scholar 

  2. Anderson, P. A., G. J. Lawrence, B. C. Morrish, M. A. Ayliffe, E. J. Finnegan, and J. G. Ellis. 1997. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9: 641–651.

    Article  CAS  PubMed  Google Scholar 

  3. Bent, A. F. 1996. Plant disease resistance genes: Function meets Structure. Plant Cell 8: 1757–1771.

    Article  CAS  PubMed  Google Scholar 

  4. Bent, A. F., B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung, and B. J. Staskawicz. 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856–1860.

    Article  CAS  PubMed  Google Scholar 

  5. Bisgrove, S. R., M. T. Simonich, N. M. Smith, A. Sattler, and R. W. Innes. 1994. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6: 927–933.

    Article  CAS  PubMed  Google Scholar 

  6. Cai, D., M. Kleine, S. Kifle, H.-J. Harloff, N. N. Sandal, K. A. Marcker, R. M. Klein-Lankhorst, E. M. J. Salentijn, W. Lange, W. J. Stiekema, U. Wyss, F. M. W. Grundler, and C. Jung. 1997. Positional cloning bf a gene for nematode resistance in sugar beet. Science 275: 832–834.

    Article  CAS  PubMed  Google Scholar 

  7. Chittenden, T., C. Flemington, A. B. Houghton, R. G. Ebb, G. J. Gallo, B. Elangovan, G. Chinnadurai, and R. J. Lutz. 1995. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14: 5589–5596.

    CAS  PubMed  Google Scholar 

  8. Dixon, M. S., D. A. Jones, J. S. Keddie, C. M. Thomas, K. Harrison, and J. D. G. Jones. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459.

    Article  CAS  PubMed  Google Scholar 

  9. Ellingboe, A. H. 1981. Changing concepts in host-pathogen genetics. Ann. Rev. Phytopathol. 19: 125–143.

    Article  CAS  Google Scholar 

  10. Flor, H. H. 1971. Current status of gene-for-gene concept. Ann. Rev. Phytopathol. 9: 275–296.

    Article  Google Scholar 

  11. Gabriel, D. W., and B. G. Rolfe. 1990. Working models of specific recognition in plant-microbe interactions. Ann. Rev. Phytopathol. 28:365– 391.

    Article  CAS  Google Scholar 

  12. Gopalan, S., D. W. Bauer, J. R. Alfano, A. O. Loniello, S. Y. He, and A. Collmer. 1996. Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity ( Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8: 1095–1105.

    Article  CAS  PubMed  Google Scholar 

  13. Grant, M. R., L. Godiard, E. Straube, T. Ashfield, J. Lewald, A. Sattler, R. W. Innes, and J. L. Dangl. 1995. Structure of the Arabidopsis RPM1 gene which enables dual-specificity disease resistance. Science 269: 843–846.

    Article  CAS  PubMed  Google Scholar 

  14. Hammond-Kosack, K. E., and J. D. G. Jones. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773–1791.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, H. C., R. H. Lin, C. J. Chang, A. Collmer, and W. L. Deng. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinpSS secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8:733– 746.

    Article  CAS  PubMed  Google Scholar 

  16. Innes, R. W., A. F. Bent, B. N. Kunkel, S. R. Bisgrove, and B. J. Staskawicz. 1993. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175: 4859–4869.

    CAS  PubMed  Google Scholar 

  17. Jefferson, R. A., T. A. Kavanagh, and M. W. Bevan. 1987. GUS fusions: 6- glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 13: 3901–3907.

    Google Scholar 

  18. Jones, D. A., C. M. Thomas, K. E. Hammond-Kosack, P. J. Balint-Kurti, and J. D. G. Jones. 1994. Isolation of the Tomato Cf-9 Gene for Resistance to Cladosporium fulvum by Transposon Tagging. Science 266: 789–793.

    Article  CAS  PubMed  Google Scholar 

  19. Keen, N. T. 1992. The molecular biology of disease resistance. Plant Molecular Biology 19: 109–122.

    Article  CAS  PubMed  Google Scholar 

  20. Klement, Z. 1982. Hypersensitivity, p. 149–177. In M. S. Mount, and G. H. Lacy (ed.), Phytopathogenic Procaryotes, Vol. 2, vol. 2. Academic Press, New York.

    Google Scholar 

  21. Kunkel, B. N., A. F. Bent, D. Dahlbeck, R. W. Innes, and B. J. Staskawicz. 1993. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5: 865–875.

    Article  CAS  PubMed  Google Scholar 

  22. Lamb, C. J., M. A. Lawton, M. Dron, and R. A. Dixon. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224.

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence, G. J., E. J. Finnegan, M. A. Ayliffe, and J. G. Ellis. 1995. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell 7:1195– 1206.

    Article  CAS  PubMed  Google Scholar 

  24. Leister, R. T., F. M. Ausubel, and F. Katagiri. 1996. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genesRPS2 and RPM1. Proc. Natl. Acad. Sci. USA 93: 15497–15502.

    Article  CAS  PubMed  Google Scholar 

  25. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean and hypersensitivity on non-host plants. J. Bacteriol. 168: 512–522.

    CAS  PubMed  Google Scholar 

  26. Martin, G. B., S. H. Brommonschenkel, J. Chunwongse, A. Frary, M. W. Ganal, R. Spivey, T. Wu, E. D. Earle, and S. D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  27. Martin, G. B., A. Frary, T. Wu, S. Brommonschenkel, J. Chunwongse, E. D. Earle, and S. D. Tanksley. 1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543– 1552.

    Article  CAS  PubMed  Google Scholar 

  28. Mindrinos, M., F. Katagiri, G.-L. Yu, and F. M. Ausubel. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089–1099.

    Article  CAS  PubMed  Google Scholar 

  29. Ori, N., Y. Eshed, I. Paran, G. Presting, D. Aviv, S. Tanksley, D. Zamir, and R. Fluhr. 1997. The I2C family from the wilt disease resistance locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance gene. Plant Cell 9: 521–531.

    Article  CAS  PubMed  Google Scholar 

  30. Pirhonen, M. U., M. C. Lidell, D. L. Rowley, S. W. Lee, S. Jin, Y. Liang, S. Silverstone, N. T. Keen, and S. W. Hutcheson. 1996. Phenotypic expression of Pseudomonas syringae avr genes in E. coli linked to the activities of the hrp-encoded secretion system. Mol Plant-Microbe Interact 9: 252–260.

    CAS  Google Scholar 

  31. Rommens, C. M., J. M. Salmeron, G. E. Oldroyd, and B. J. Staskawicz. 1995. Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7: 1537–1544.

    Article  CAS  PubMed  Google Scholar 

  32. Rommens, C. M. T., J. M. Salmeron, D. C. Baulcombe, and B. J. Staskawicz. 1995. Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity. Plant Cell 7: 249–257.

    Article  CAS  PubMed  Google Scholar 

  33. Rosqvist, R., S. Hakansson, A. Forsberg, and H. Wolf-Watz. 1995. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J 14:4187–4195.

    CAS  PubMed  Google Scholar 

  34. Ryals, J. A., U. H. Newenschwander, M. G. Willits, A. Molina, H.-Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 1809–1819.

    Article  CAS  PubMed  Google Scholar 

  35. Salmeron, J. M., G. E. D. Oldroyd, C. M. T. Rommens, S. R. Scofield, H.- S. Kim, D. T. Lavelle, D. Dahlbeck, and B. J. Stackawicz. 1996. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123–133.

    Article  CAS  PubMed  Google Scholar 

  36. Scofield, S. R., C. M. Tobias, J. P. Rathjen, J. H. Chang, D. T. Lavelle, R. W. Michelmore, and B. J. Staskawicz. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063–2065.

    Article  CAS  PubMed  Google Scholar 

  37. 37.Smith, M., E. Mazzola, J. Sims, S. Midland, and N. Keen. 1993. The syringolides: Bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett. 34:223–226.

    Article  CAS  Google Scholar 

  38. Song, W.-Y., G.-L. Wang, L.-L. Chen, H.-S. Kim, L.-Y. Pi, T. Holsten, J. Gardner, B. Wang, W.-X. Zhai, L.-H. Zhu, C. Fauquet, and P. Ronald. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806

    Article  CAS  PubMed  Google Scholar 

  39. Tamaki, S., D. Dahlbeck, B. Staskawicz, and N. T. Keen. 1988. Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. J. Bacteriol 170: 4846–4854.

    CAS  PubMed  Google Scholar 

  40. Tang, X., R. D. Frederick, J. Zhou, D. A. Halterman, Y. Jia, and G. B. Martin. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060–2063.

    Article  CAS  PubMed  Google Scholar 

  41. Wet, J. R. d., K. V. Wood, D. R. Helinski, and M. DeLuca. 1985. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 7870–7873.

    Article  PubMed  Google Scholar 

  42. Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr, and B. Baker. 1994. The product of the tobacco mosaic resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1105.

    Article  CAS  PubMed  Google Scholar 

  43. Whitham, S., S. McCormick, and B. Baker. 1996. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA 93: 8776–8781.

    Article  CAS  PubMed  Google Scholar 

  44. Yu, G.-L., F. Katagiri, and F. M. Ausubel. 1993. Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol. Plant-Microbe Interact. 6:434– 443.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, J., Y.-T. Loh, R. A. Bressan, and G. B. Martin. 1995. The tomato gene Ptil encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83: 925–935.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katagiri, F., Leister, R.T. (1998). Use of transient expression in plants for the study of the “gene-for-gene” interaction. In: Lo Schiavo, F., Last, R.L., Morelli, G., Raikhel, N.V. (eds) Cellular Integration of Signalling Pathways in Plant Development. NATO ASI Series, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72117-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72117-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72119-9

  • Online ISBN: 978-3-642-72117-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics