Zone Plates in Nickel and Germanium for High-Resolution X-Ray Microscopy

  • T. Schliebe
  • G. Schneider

Abstract

New manufacturing processes for highly efficient high resolution phase zone plates in nickel and germanium are described. A high resolution cross-linked PMMA resist has been synthesized and optimized for the generation of zone plate patterns with smallest zone width down to 19 nm by e-beam lithography. The resist shows an increased resolution compared to conventional PMMA for periodic structures with line to space ratio of I: I. For the pattern transfer into the zone plate material a cross-linked polymer has been developed. This polymer can be structured by reactive ion etching (RIE) with oxygen, thereby aspect ratios of up to 6: I can be obtained using a trilevel process. The polymer structures can be used either as galvanoform for electrodeposition of nickel or as an etching mask for structuring germanium zone plates. Electroplated nickel zone plates with outermost zone width of 40 nm and 30 nm have been fabricated and achieve 15% and II % diffraction efficiency. For germanium zone plates with outermost zone width of 40 nm, 30 nm and 19 nm diffraction efficiencies of 14%, 10% and 4% were measured at 2.4 nm wavelength.

Keywords

Titanium Nickel Peroxide Phosphorus Chromium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Maser, in: X-Ray Microscopy IV, ed. by V.V. Aristov and A.I. Erko, Chernogolovka, Moskow Region, Bogorodski Pechatnik, 1994.Google Scholar
  2. 2.
    F. Emoto, K. Garno, S. Namba, N. Samoto, R. Shimizu and N. Tamura, Microelectronic Engineering 3, 17 (1985), North Holland, pp. 17–24.Google Scholar
  3. 3.
    G. Schneider, T. Schliebe and H. Aschoff, J. Vac. Sci. Technol. B 13 1995.Google Scholar
  4. 4.
    E.H. Anderson and D. Kern, in: X-Ray Microscopy III, ed. by A.G. Michette, G.R. Morrison and C.J. Buckley Springer Verlag, Berlin, pp. 75–78, 1992.CrossRefGoogle Scholar
  5. 5.
    C. David, B. Kaulich, R. Medenwald, M. Hettwer, N. Fay, M. Diehl, J. Thieme and G. Schmahl, J. Vac. Sci. Technol. B 13, 1995.Google Scholar
  6. 6.
    C. David, R. Medenwald, J. Thieme, P. Guttmann, D. Rudolph and G. Schmahl, J. Optics, vol 23, n° 6, pp. 255–258,1992.ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Tennant E.L. Raab, M.M. Becker, M.L. O′Malley, J.E. Bjorkholm and R.W. Epworth, J. Vac. Sc. Technol. B 8, pp. 1970–1974, 1990.CrossRefGoogle Scholar
  8. 8.
    J. Thieme, C. David, N. Fay, B. Kaulich, R. Medenwald, M. Hettwer, P. Guttmann, U. Kogler, J. Maser, G. Schneider, D. Rudolph, and G. Schmahl, in: X-Ray Microscopy IV, ed. by V.V. Aristov and A.I. Erko, Chernogolovka, Moskow Region, Bogorodski Pechatnik, 1994.Google Scholar
  9. 9.
    J.-B. Sibarita, J. Lehr, M. Robert-Nicoud and J.-M. Chassery, this volume.Google Scholar
  10. 10.
    G. Schneider, G. Schmahl, T. Schliebe, M. Peuker and P. Guttmann, this volume.Google Scholar
  11. 11.
    J. Thieme, J. Niemeyer, this volume.Google Scholar
  12. 12.
    P. Fischer, G. Schlitz, G. Schmahl, P.Guttmann and D. Raasch, this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • T. Schliebe
    • 1
  • G. Schneider
    • 1
  1. 1.Forschungseinrichtung RöntgenphysikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations