Advertisement

Microchemical Analysis of Boron in Rat Brain Tumor: A Spectromicroscopy Study with MEPHISTO

  • Gelsomina de Stasio

Abstract

The boron microscopic distribution in brain tissue sections is an extremely important issue for the success of boron neutron capture therapy for cancer. We present the first results of a new approach to assess this distribution and its homogeneity: photoelectron spectromicroscopy with synchrotron radiation enabled us to detect boron in rat brain tissue specimens with a lateral resolution of 0.2 μm and a detection sensitivity of a few ppm. These experiments were performed by the newly commissioned MEPHISTO spectromicroscope (from the French acronym “Microscope ä Emission de Photoé lectrons par Illumination Synchrotronique de Type Onduleur”, or “Photoelectron Emission Microscope by Synchrotron Undulator Illumination”). The specimens were brain tissue sections from two rats injected with BPA (boronophenylalanine) or BSH (dodecahydro-dodecaborate). We found boron only in cancer-related structures, and with a higher concentration in the BPA-treated specimens than in the BSH-case. These results are in good agreement with the quantitative results obtained by inductively coupled plasma atomic emission spectroscopy.

Keywords

Inductively Couple Plasma Atomic Emission Spectroscopy Couple Plasma Atomic Emission Spectroscopy Inductively Couple Plasma Atomic Emission Spectroscopy Boron Neutron Capture Therapy Brain Tissue Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Advances in Neutron Capture Therapy”, A. H. Soloway, R. F. Barth and D. E. Carpenter Eds., Plenum Press, New York, pp. 829 (1993).Google Scholar
  2. 2.
    B. Otersen et al., Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich 1996, Proceedings to be published by Elsevier Science, Excerpta Medica, International Congress Series 1132, submitted.Google Scholar
  3. 3.
    W. F. Bauer, P. L. Micca and B. M. White, in “Advances in Neutron Capture Therapy”, A. H. Soloway, R. F. Barth and D. E. Carpenter Eds., Plenum Press, New York (1993), p. 403.CrossRefGoogle Scholar
  4. 4.
    N. Hotz and W. Bauer, ibid, p. 439.Google Scholar
  5. 5.
    Tonner, B. P., and Harp, G. R., Rev. Sci. Instrum. 59, 853–858 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    Tonner, B. P., and Harp, G. R., J. Vac. Sci. Technol. 7, 1–4 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    Tonner, B. P., Harp, G. R., Koranda, S. F., Zhang, J., Rev. Sci. Instrum. 63, 564–568 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    De Stasio, Gelsomina, Hardcastle, S., Koranda, S. F., Tonner, B. P., Mercanti, D., Ciotti, M. Teresa, Perfetti, P., and Margaritondo, G., Phys. Rev. E47, 2117–2121 (1993).ADSGoogle Scholar
  9. 9.
    Gelsomina De Stasio, Journal de Physique IV 4, C9–287-292 (1994).Google Scholar
  10. 10.
    G. Margaritondo, G. De Stasio, C. Coluzza, J. Electron Spectrosc. 72, 281–287 (1995).CrossRefGoogle Scholar
  11. 11.
    Gelsomina De Stasio et al., Synchrotron Radiation News 7, 18–21 (1994).CrossRefGoogle Scholar
  12. 12.
    D. Gabel et al., Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich 1996, Proceedings to be published by Elsevier Science, Excerpta Medica, International Congress Series 1132, submitted.Google Scholar
  13. 13.
    Thellier, M., Ripoll, C., Quintana, C., Sommer, F., Chevallier, P., and Dainty, J., Methods in Enzymology 227,535–586 (1993).CrossRefGoogle Scholar
  14. 14.
    V. K. F. Chia, R. J. Blieler, D. B. Sams, et al., in “Advances in Neutron Capture Therapy”, A. H. Soloway, R. F. Barth and D. E. Carpenter Eds., Plenum Press, New York (1993) p. 409.CrossRefGoogle Scholar
  15. 15.
    R. D. Leapman and D. E. Newbury, Anal. Chern. 65, 2409 (1993).CrossRefGoogle Scholar
  16. 16.
    H. Raether, in“excitation of Plasmons and Interband Transitions by Electrons”, Springer-Verlag, Berlin 1980.Google Scholar
  17. 17.
    Gelsomina De Stasio et al., Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich 1996, Proceedings to be published by Elsevier Science, Excerpta Medica, International Congress Series 1132, submitted.Google Scholar
  18. 18.
    Gudat, W. and Kunz, c., Phys. Rev. Lett. 29, 169–173 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    A. Varma, Hanbook of Inductively Coupled Plasma Atomic Emission Spectroscopy, CRe, Boca Raton, 380 pp. (1991).Google Scholar
  20. 20.
    R. M. Barnes, Chemia Analityczna 28, 179 (1983).Google Scholar
  21. 21.
    S. Caroli, E. Coni, A. Alimonti, E. Beccaloni, E. Sabbioni and R. Pietra, Analusis 16, 75 (1988).Google Scholar
  22. 22.
    L. Bourrier-Guerin, Y. Mauras, J. L. Truelle and P. Allain, Trace Element in Medicine 2, 88(1985).Google Scholar
  23. 23.
    C. De Martino, S. Caroli, A. Alimonti, F. Petrucci, G. Citro and A. Nista, J. Exp. Clin. Cancer Res. 10, 1 (1991).Google Scholar
  24. 24.
    A. Alimonti, S. Caroli, L. Musmeci et al., Sci. Total Environm. 71, 495–500 (1988).CrossRefGoogle Scholar
  25. 25.
    E. Sabbioni, G. R. Nicolini, R. Pietra et al., Biol. Trace Elem. Res. 26127, 757–768 (1990).CrossRefGoogle Scholar
  26. 26.
    Setiawan, Y., Halliday, G. M., Harding, A. J., Moore, D. E., and Allen, B. J., Cancer Res. 55, 874–877 (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Gelsomina de Stasio
    • 1
    • 2
  1. 1.Institut de Physique Appliquée, Ecole Polytechnique FédéralePH-EcublensLausanneSwitzerland
  2. 2.Istituto di Struttura della Materia del CNRFrascati, RomaItaly

Personalised recommendations