Skip to main content

Reoviruses and the Interferon System

  • Chapter
Reoviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 233/2))

Abstract

What are interferons (IFNs)? How do IFNs function to reduce the efficiency of reovirus replication? Considerable progress has been made toward answering these and many other important questions concerning the IFN system. In the course of answering these questions fundamental new insights have been gained that advance our understanding of the processes used to control gene expression in animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atta MS, Irving WI, Powell RJ, Todd I (1995) Enhanced expression of MHC class I molecules on cultured human thyroid follicular cells infected with reovirus through induction of type 1 interferons. Clin Exp Immunol 101:121–126

    PubMed  CAS  Google Scholar 

  • Atwater JA, Samuel CE (1982) Interferon inhibits the synthesis of viral proteins and induces PI phosphorylation in both adenylate cyclase-deficient and cAMP-dependent protein kinase deficient variants of mouse lymphoma cells. Virology 123:206–211

    PubMed  CAS  Google Scholar 

  • Atwater JA, Munemitsu SM, Samuel CE (1986) Molecular cDNA cloning and nucleotide sequence of the reovirus serotype 1 Lang strain S4 mRNA which encodes the major capsid surface polypeptide 63. Biochem Biophys Res Commun 136:183–192

    PubMed  CAS  Google Scholar 

  • Atwater JA, Munemitsu SM, Samuel CE (1987) Efficiency of expression of cDNAs of the reovirus SI and S4 genes in transfected animal cells differs at the level of translation. Virology 159:350–357

    PubMed  CAS  Google Scholar 

  • Baglioni C, De Benedetti A, Williams GJ (1984) Cleavage of nascent reovirus mRNA by localized activation of the 2’-5’-oligoadenylate-dependent endoribonuclease. J Virol 52:865–871

    PubMed  CAS  Google Scholar 

  • Barber GN, Edelhoff S, Katze MG, Disteche CM (1993) Chromosomal assignment of the interferoninducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21-p22 and mouse chromosome 17E2. Genomics 16:765–767

    PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modified its double-stranded RNA substrate. Cell 55:1089–1098

    PubMed  CAS  Google Scholar 

  • Beattie E, Tartaglia J, Paoletti E (1991) Vaccinia virus-encoded eIF-2a homologue abrogates the antiviral effect of interferon. Virology 183:419–422

    PubMed  CAS  Google Scholar 

  • Beattie E, Denzler KL, Tartaglia J, Perkus ME, Paoletti E, Jacobs BL (1995) Reversal of the interferon-sensitive phenotype of a vaccina virus lacking E3L by expression of the reovirus S4 gene. J Virol 69:499–505

    PubMed  CAS  Google Scholar 

  • Benkirane M, Neuveut C, Chun RF, Smith SM, Samuel CE, Gatignol A, Jeang KT (1997) Oncogenic potential of TAR RNA-binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J 16:611--624

    PubMed  CAS  Google Scholar 

  • Berry MJ, Knutson GS, Lasky SR, Munemitsu SM, Samuel CE (1985) Mechanism of interferon action. Purification and substrate specificities of the double-stranded RNA-dependent protein kinase from untreated and interferon-treated mouse fibroblasts. J Biol Chem 260:11240–11247

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Samuel CE (1989) Activation of the PI/eIF-2a protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology 172:106–115

    PubMed  CAS  Google Scholar 

  • Blatt LM, Davis JM, Klein SB, Taylor MW (1996) The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon.1 Interferon Cytokine Res 16: 489–499

    CAS  Google Scholar 

  • Campbell IL, Harrison LC (1989) Viruses and cytokines: evidence for multiple roles in pancreatic beta cell destruction in type 1 insulin-dependent diabetes mellitus. J Cell Biochem 40:57–66

    PubMed  CAS  Google Scholar 

  • Cattaneo R (1994) Biased (A > I) hypermutation of animal RNA virus genomes. Curr Opin Genet Dev 4:895–900

    PubMed  CAS  Google Scholar 

  • Chang HW, Jacobs BL (1993) Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194:537–547

    PubMed  CAS  Google Scholar 

  • Chang HW, Watson JC Jacobs BL (1992) The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced double-stranded RNA-dependent protein kinase. Proc Natl Acad Sei USA 89:4825–4829

    CAS  Google Scholar 

  • Chebath J, Benech P, Revel M, Vigneron M (1987) Constitutive expression of 2’S’ oligo A synthetase confers resistance to picornavirus infection. Nature 330:587–588

    PubMed  CAS  Google Scholar 

  • Clemens MJ (1996) Protein kinases that phosphorylate eIF-2 and eIF-2B, and their role m eukaryotic cell translational control. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 139–172

    Google Scholar 

  • Coccia EM, Romeo G, Nissim A, Marziali G, Albertini R, Affabris E, Battistini A, Fiorucci G, Orsatti R, Rossi GB, Chebath J (1990) A full-length murine 2–5A synthetase cDNA transfected in NIH-3T3 cells impairs EMCV but not VSV replication. Virology l79:228–233

    Google Scholar 

  • Cosentino GP, Venkatesan S, Serluca FC, Green SR, Mathews MB, Sonenberg N (1995) Double-stranded RNA-dependent protein kinase and TAR RNA-binding protein form homo-and heterodimers in vivo. Proc Natl Acad Sci USA 92:9445–9449

    PubMed  CAS  Google Scholar 

  • Daher KA, Samuel CE (1982) Mechanism of interferon action. Differential effect of interferon on,the synthesis of simian virus 40 and reovirus polypeptides in monkey kidney cells. Virology I17:379–390

    Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GM (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    PubMed  CAS  Google Scholar 

  • Davies MV, Furtado M, Hershey JWB, Thimmappaya B, Kaufman RJ (1989) Complementation of adenovirus virus-associated RNA I gene deletion by expression of a mutant eukaryotic translation initiation factor. Proc Natl Acad Sci USA 86:9163–9167

    PubMed  CAS  Google Scholar 

  • DeBenedetti A, Williams GJ, Comeau L, Baglioni C (1985a) Inhibition of viral mRNA translation in interferon-treated L cells infected with reovirus. J Virol 55:588–593

    Google Scholar 

  • DeBenedetti A, Williams GJ, Baglioni C (1985b) Inhibition of binding to initiation complexes of nascent reovirus mRNA by double-stranded RNA-dependent protein kinase. J Virol 54:408--413

    Google Scholar 

  • DeMaeyer E, DeMaeyer-Guignard J (1988) Interferons and other regulatory cytokines. Wiley, New York

    Google Scholar 

  • Desrosiers RC, Lengyel P (1979) Iinpairment of reovirus mRNA “cap” methylation in interferon-treated mouse L929 cells. Biochim Biphys Acta 562:471–480

    CAS  Google Scholar 

  • Diaz MO, Bohlander S, Allen G (1993) Nomenclature of the human interferon genes. J Interferon Res 13:61–62

    CAS  Google Scholar 

  • Ellis MN, Eidson CS, Brown J, Kleven SH (1983) Studies on interferon induction and interferon sensitivity of avian reoviruses. Avian Dis 27:927--936

    PubMed  CAS  Google Scholar 

  • Feduchi E, Esteban M, Carrasco L (1988) Reovirus type 3 synthesizes proteins in interferon-treated HeLa cells without reversing the antiviral state. Virology 164:420–426

    PubMed  CAS  Google Scholar 

  • Fields BN, Greene MI (1982) Genetic and molecular mechanisms of viral pathogenesis: implications for prevention and treatment. Nature 300:19–32

    PubMed  CAS  Google Scholar 

  • Galster RL, Lengyel P (1976) Formation and characteristics of reovirus subviral particles in intèrferontreated mouse L cells. Nucleic Acid Res 3:581–598

    PubMed  CAS  Google Scholar 

  • Gaillard RK, Joklik WK (1985) The relative translation efficiency of reovirus messenger RNAs. Virology I47:336–348

    Google Scholar 

  • Gale M, Tan SL, Wambach M, Katze MG (1996) Interaction of the interferon-induced PKR protein kinase with inhibitory proteins p58 and vaccinia virus K3L is mediated by unique domains: implication for kinase regulation. Mol Cell Biol 16:4172–4181

    PubMed  CAS  Google Scholar 

  • George CX, Samuel CE (1988) Mechanism of interferon action. Expression of reovirus S3 gene in transfected COS cells and subsequent inhibition at the level of protein synthesis by type I but not by type II interferon. Virology 166:573–582

    PubMed  CAS  Google Scholar 

  • Giantini M, Shatkin AJ (1989) Stimulation of chloramphenicol acetyltransferase mRNA translation by reovirus capsid polypeptide cr3 in cotransfected COS cells. J Virol 63:2415–2421

    PubMed  CAS  Google Scholar 

  • Gupta SL, Graziadi WD, Weideli H, Sopori M, Lengyel P (1974) Selective inhibition of viral protein accumulation in interferon-treated cells: nondiscriminate inhibition of the translation of added viral and cellular messenger RNAs in their extracts. Virology 57:49–63

    PubMed  CAS  Google Scholar 

  • Gupta SL, Holmes SL, Mehra LL (1982) Interferon action against reovirus: activation of interferon-induced protein kinase in mouse L929 cells upon reovirus infection. Virology 120:495–499

    PubMed  CAS  Google Scholar 

  • Henderson DR, Joklik WK (1978) The mechanism of interferon induction by UV-irradiated reovirus. Virology 91:389–406

    PubMed  CAS  Google Scholar 

  • Henry GL, McCormack SJ, Thomis DC, Samuel CE (1994) Translational control and the RNA-de- pendent protein kinase PKR: antagonists of PKR enhance the translational activity of mRNAs that include a 161 nucleotide region from reovirus sI mRNA.1 Biol Regul Homeost Agents 8:15–24

    CAS  Google Scholar 

  • Hershey JWB (1991) Translational control in mammalian cells. Annu Rev Biochem 60:715–755

    Google Scholar 

  • Hiscott J, Nguyen M, Lin RT (1995) Molecular mechanisms of interferon beta gene induction. Sem in Virol 6:161–173

    CAS  Google Scholar 

  • Huismans H, Joklik WK (1976) Reovirus-coded polypeptides in infected cells: isolation of two native monomeric polypeptides with affinity for single-stranded and double-stranded RNA respectively. Virology 70:411–424

    PubMed  CAS  Google Scholar 

  • Icely PL, Gross P, Bergeron JJM, Devault A, Afar DEH, Bell JC (1991) TIK, a novel serinelthreonine kinase, is recognized by antibodies directed against phosphotyrosine. J Biol Chem 266: 16073–16077

    PubMed  CAS  Google Scholar 

  • Imani F, Jacobs BL (1988) Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc Natl Acad Sci USA 85:7887–7891

    PubMed  CAS  Google Scholar 

  • Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B 147:258–267

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Ferguson RE (1991) The Lang strain of reovirus serotype 1 and the Dearing strain of reovirus serotype 3 differ in their sensitivities to beta interferon. J Virol 65:5102–5104

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Langland JO (1996) When two strands are better than one: the mediators of modulators of cellular responses to double-stranded RNA. Virology 219:339–349

    PubMed  CAS  Google Scholar 

  • Joklik WK (1983) The reoviridae. Plenum, New York

    Google Scholar 

  • Kaempfer R, Israeli R, Rosen H, Knoller S, Zilberstein A, Schmidt A, Revel M (1979) Reversal of the interferon-induced block of protein synthesis by purified preparation of eukaryotic initiation factor 2. Virology 99:170–173

    PubMed  CAS  Google Scholar 

  • Kedl R, Schmechel S, Schiff L (1995) Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and serotype 3 field isolates. J Virol 69:552–559

    PubMed  CAS  Google Scholar 

  • Kingsman SM, Smith MD, Samuel CE (1980) Mechanism of interferon action. Simian virus 40-specific early polypeptides synthesized in untreated and interferon-treated monkey kidney cells. Proc Natl Acad Sci USA 77:2419–2423

    PubMed  CAS  Google Scholar 

  • Kitajewski J, Schneider RJ, Safer B, Munemitsu SM, Samuel CE, Thimmappaya B, Shenk T (1986) Adenovirus VAI RNA antagonizes the antiviral state of interferon by preventing activation of the interferon-induced eIF-2a kinase. Cell 45:195–200

    PubMed  CAS  Google Scholar 

  • Kuhen KL, Samuel CE (1997) Isolation of the interferon-inducible RNA-dependent protein kinase Pkr promoter and identification of a novel DNA element within the 5’-flanking region of the human and mouse Pkr genes. Virology 227:119–130

    PubMed  CAS  Google Scholar 

  • Kuhen KL, Shen X, Carlisle ER, Richardson AL, Weier HUG, Tanak H, Samuel CE (1996a) Structural organization of the human gene PKR encoding an interferon-inducible RNA-dependent protein kinase and differences from its mouse homolog. Genomics 36:197–201

    CAS  Google Scholar 

  • Kuhen KL, Shen X, Samuel CE (1996b) Mechanism of interferon action. Sequence of the human interferon-inducible RNA-dependent protein kinase (PK R) deduced from genomic clones. Gene 178:191–193

    CAS  Google Scholar 

  • Lai M-HT, Joklik WK (1973) The induction of interferon by temperature-sensitive mutants of reovirus, UV-irradiated reovirus, and subviral reovirus particles. Virology 51:191–204

    PubMed  CAS  Google Scholar 

  • Lee PWK, Hayes EC, Joklik WK (1981) Characterization of anti-reovirus immunoglobuline secreted by cloned hybridoma cell lines. Virology 108:134–146

    PubMed  CAS  Google Scholar 

  • Lengyel P, Desrosiers R, Broeze R, Slattery E, Taira H, Dougherty J, Samanta H, Pichon J, Farrell P, Ratner L, Sen G (1980) In microbiology 1980. American Society of Microbiology, Washington DC, pp 219–226

    Google Scholar 

  • Levin KH, Samuel CE (1980) Biosynthesis of reovirus-specified polypeptides. Purification and characterization of the small-sized class mRNAs of reovirus type 3: coding assignments and translational efficiencies. Virology 106:1–13

    PubMed  CAS  Google Scholar 

  • Lewis JA (1988) Induction of an antiviral state by interferon in the absence of elevated levels of 2,5oligo(A) synthetase and eIF-2 kinase. Virology 162:118–127

    PubMed  CAS  Google Scholar 

  • Liu Y, Samuel CE (1996) Mechanism of interferon action. Functionally distinct dsRNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase. J Virol 70:1961–1968

    PubMed  CAS  Google Scholar 

  • Liu Y, George CX, Patterson JB, Samuel CE (1997) Functionally distinct dsRNA-binding domains associated with alternative splice-site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem 272:4419–4428

    PubMed  CAS  Google Scholar 

  • Lloyd RM, Shatkin AJ (1992) Translational stimulation by reovirus polypeptide a3: substitution for VAI RNA and inhibition of phosphorylation of the a subunit of eukaryotic initiation factor eIF-2. J Virol 66:6878–6884

    PubMed  CAS  Google Scholar 

  • Long WF, Burke DC (1971) Interferon production by double-stranded RNA: a comparison of interferon induction by reovirus RNA to that by a synthetic double-stranded polynucleotide. J Gen Virol 12: 1–11

    PubMed  CAS  Google Scholar 

  • Major AS, Cuff CF (1996) Effects of the route of infection on immunoglobulin G subclasses and specificity of the reovirus-specific humoral immune response. J Virol 70:5968–5974

    PubMed  CAS  Google Scholar 

  • Mathews MB, Shenk T (1991) Adenovirus virus-associated RNA and translational control. J Virol 65:5657–5662

    PubMed  CAS  Google Scholar 

  • McCormack SJ, Samuel CE (1995) Mechanism of interferon action. RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase PKR — determination of KD values for VAI and TAR RNAs. Virology 206:511–519

    PubMed  CAS  Google Scholar 

  • McCormack SJ, Thomis DC, Samuel CE (1992) Mechanism of interferon action. Identification of a RNA-binding domain within the N-terminal region of the human RNA-dependent PI/eIF-2a protein kinase. Virology 188:47–56

    PubMed  CAS  Google Scholar 

  • Meurs E, Chong K, Galabru J, Thomas NSB, Kerr IM, Williams BRG, Hovanessian AG (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390

    PubMed  CAS  Google Scholar 

  • Miller JE, Samuel CE (1992) Proteolytic cleavage of the reovirus sigma 3 protein results in enhanced double-stranded RNA-binding activity: identification of a repeated basic amino acid motif within the C-terminal binding region. J Virol 66:5347–5356

    PubMed  CAS  Google Scholar 

  • Miyamoto NG, Samuel CE (1980) Mechanism of interferon action. Interferon-mediated inhibition of reovirus mRNA translation in the absence of detectable mRNA degradation but in the presence of protein phosphorylation. Virology 107:461–475

    PubMed  CAS  Google Scholar 

  • Miyamoto NG, Jacobs BL, Samuel CE (1983) Mechanism of interferon action. Effect of double-stranded RNA and the 5’-O-monophosphate form of 2’,5’-oligoadenylate on the inhibition of reovirus mRNA translation in vitro. J Biol Chem 258:15232–15237

    PubMed  CAS  Google Scholar 

  • Munemitsu SM, Samuel CE (1988) Biosynthesis of reovirus-specified polypeptides: effect of point mutation of the sequences flanking the 5’-proximal AUG initiation codons of the reovirus sl and s4 genes on the efficiency of mRNA translation. Virology 163:643–646

    PubMed  CAS  Google Scholar 

  • Munoz A, Carrasco L (1984) Action of human lymphoblastoid interferon on HeLa cells infected with RNA-containing animal viruses. J Gen Virol 65:377–390

    PubMed  CAS  Google Scholar 

  • Nagano Y, Kojima Y (1958) Inhibition de l’infection vaccinale par le virus homologue. CR Seances Soc Bio Filiales 152:1627–1630

    CAS  Google Scholar 

  • Neufeld DS, Platzer M, Davies TF (1989) Reovirus induction of MHC class II antigen in rat thyroid cells. Endocrinology 124:543–545

    PubMed  CAS  Google Scholar 

  • Nilsen TW, Maroney PA, Baglioni C (1982a) Inhibition of protein synthesis in reovirus-infected He La cells with elevated levels of interferon-induced protein kinase activity. J Biol Chem 257:14593–14596

    CAS  Google Scholar 

  • Nilsen TW, Maroney PA, Baglioni C (1982b) Synthesis of (2’-5’)oligoadenylate and activation of an endoribonuclease in interferon-treated HeLa cells infected with reovirus. J Virol 42:1039–1045

    CAS  Google Scholar 

  • Nilsen TW, Maroney PA, Baglioni C (1983) Maintenance of protein synthesis in spite of mRNA breakdown in interferon-treated HeLa cells infected with reovirus. Mol Cell Biol 3:64–69

    PubMed  CAS  Google Scholar 

  • Ortega LG, McCotter MD, Henry GL, McCormack SJ, Thomis DC, Samuel CE (1996) Mechanism of interferon action. Biochemical and genetic evidence for the intermolecular association of the RNA-dependent protein kinase PKR from human cells. Virology 215:31–39

    PubMed  CAS  Google Scholar 

  • Pathak VK, Schindler D, Hershey JWB (1988) Generation of a mutant form of protein synthesis initi- ation factor eIF-2 lacking the site of phosphorylation by eIF-2 kinases. Mol Cell Biol 8:993–995

    PubMed  CAS  Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    PubMed  CAS  Google Scholar 

  • Patterson JB, Thomis DC, Hans SL, Samuel CE (1995) Mechanism of interferon action. Double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology 210:508–511

    PubMed  CAS  Google Scholar 

  • Pestka S, Langer JA, Zoon KC, Samuel CE (1987) Interferons and their actions. Annu Rev Biochem 56:727–777

    PubMed  CAS  Google Scholar 

  • Roner MR, Gaillard RK, Joklik WK (1989) Control of reovirus mRNA translation efficiency by the regions upstream of initiation codons. Virology 168:292–301

    PubMed  CAS  Google Scholar 

  • Rubin BY, Gupta SL (1980) Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci USA 77:5928–5932

    PubMed  CAS  Google Scholar 

  • Samuel CE (1979) Mechanism of interferon action. Phosphorylation of protein synthesis initiation factor elF-2 in interferon-treated human cells by a ribosome-associated protein kinase possessing site-specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Nat] Acad Sci USA 76:600–604

    PubMed  CAS  Google Scholar 

  • Samuel CE (1986) Relationship between the interferon-induced antiviral state and protein P1/eIF-2a phosphorylation in mouse fibroblasts treated with natural and recombinant viral and immune interferon. In: The biology of the interferon system 1985. Elsevier, Amsterdam, pp 101–110

    Google Scholar 

  • Samuel CE (1991) Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1–11

    PubMed  CAS  Google Scholar 

  • Samuel CE (1993) The eIF-2a protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 268:7603–7606

    PubMed  CAS  Google Scholar 

  • Samuel CE, Brody MS (1990) Biosynthesis of reovirus-specified polypeptides: 2-aminopurine increases the efficiency of translation of reovirus s mRNA but not s4 mRNA in transfected cells. Virology 176:106–113

    PubMed  CAS  Google Scholar 

  • Samuel CE, Farris DA (1977) Mechanism of interferon action. Species specificity of interferon and of the interferon-mediated inhibitor of translation from mouse, human and monkey cells. Virology 77: 556–565

    PubMed  CAS  Google Scholar 

  • Samuel CE, Joklik WK (1974) A protein synthesizing system from interferon treated cells that discriminates between cellular and viral messenger RNAs. Virology 74:403–413

    Google Scholar 

  • Samuel CE, Knutson GS (1981) Mechanism of interferon action: cloned human leukocyte interferons induce protein kinase and inhibit vesicular stomatitis virus but not reovirus replication in human amnion cells. Virology 114:302–306

    PubMed  CAS  Google Scholar 

  • Samuel CE, Knutson GS (1982a) Mechanism of interferon action. Kinetics of induction of the antiviral state and protein phosphorylation in mouse fibroblasts treated with natural and cloned interferons. J Biol Chem 257:11791–11795

    CAS  Google Scholar 

  • Samuel CE, Knutson GS (1982b) Mechanism of interferon action. Kinetics of decay of the antiviral state and protein phosphorylation in mouse fibroblasts treated with natural and cloned interferons. J Biol Chem 257:11796–11801

    CAS  Google Scholar 

  • Samuel CE, Knutson GS (1983) Mechanism of interferon action: human Leukocyte and immune inter-ferons regulate the expression of different genes and induce different antiviral states in human amnion U cells. Virology 130:474–484

    PubMed  CAS  Google Scholar 

  • Samuel CE, Farris DA, Eppstein DA (1977) Mechanism of interferon action. Kinetics of interferon action in mouse L929 cells: translation inhibition, protein phosphorylation, and messenger RNA methylation and degradation. Virology 83:56–71

    PubMed  CAS  Google Scholar 

  • Samuel CE, Kingsman SM, Melamed RW, Farris D, Smith MD, Miyamoto NG, Lasky SR, Knutson GS (1980) Mechanism of interferon mediated inhibition of protein synthesis. Ann NY Acad Sci 350: 475–485

    Google Scholar 

  • Samuel CE, Knutson GS, Masters PS (1982) Ability of cloned human type-alpha interferons to induce protein phosphorylation and inhibit virus replication is specified by the host cell rather than the interferon subspecies. J Interferon Res 2:563–574

    PubMed  CAS  Google Scholar 

  • Samuel CE, Duncan R, Knutson GS, Hershey JW (1984) Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus- infected mouse L929 fibroblasts in vitro and in vivo. J Biol Chem 259:13451–13457

    PubMed  CAS  Google Scholar 

  • Samuel CE, Knutson GS, Berry MJ, Atwater JA, Lasky SR (1986) Purification of double-stranded RNA-dependent protein kinase from mouse fibroblasts. Methods Enzymol 119:499–516

    PubMed  CAS  Google Scholar 

  • Schiff LA, Nibert ML, Co MS, Brown EG, Fields BN (1988) Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein cs3. Mol Cell Biol 8:273–283

    PubMed  CAS  Google Scholar 

  • Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–651

    PubMed  CAS  Google Scholar 

  • Schmechel S, Chute M, Skinner P, Anderson R, Schiff L (1997) Preferential translation of reovirus mRNA by a sigma3-dependent mechanism. Virology 232:62–73

    PubMed  CAS  Google Scholar 

  • Schneider RJ, Safer B, Munemitsu SM, Samuel CE, Shenk T (1985) Adenovirus VAI RNA prevents phosphorylation of the eukaryotic initiation factor 2 a subunit subsequent to infection. Proc Natl Acad Sci USA 82:4321–4325

    PubMed  CAS  Google Scholar 

  • Sen GC, Ransohoff RM (1992) Interferon-induced antiviral actions and the regulation. Adv Virus Res 42:57–102

    Google Scholar 

  • Sharpe AH, Fields BN (1983) Pathogenesis of reovirus infection. In: Joklik WK (ed) The reoviridae. Plenum, New York, pp 229–285

    Google Scholar 

  • Seliger LS, Giantini M, Shatkin Ai (1992) Translational effects and sequence comparisons of the three serotypes of the reovirus S4 gene. Virology 187:202–210

    PubMed  CAS  Google Scholar 

  • Sherry B, Bitty CJ, Blum MA (1996) Reovirus-induced acute myocarditis in mice correlates with viral RNA synthesis rather than generation of infectious virus in cardiac myocytes. J Virol 70:6709–6715

    PubMed  CAS  Google Scholar 

  • Smith RE, Zweerink HJ, Joklik WK (1969) Polypeptide components of virions, top component, and cores of reovirus type 3. Virology 39:791–798

    PubMed  CAS  Google Scholar 

  • Staeheli P (1990) Interferon-induced proteins and the antiviral state. Adv Virus Res 38:147–200

    PubMed  CAS  Google Scholar 

  • Stewart WE (1979) The interferon system. Springer. Berlin Heidelberg New York

    Google Scholar 

  • Tanaka H, Samuel CE (1994) Mechanism of interferon action. Structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci USA 91:7995–7999

    PubMed  CAS  Google Scholar 

  • Tanaka H, Samuel CE (1995) Sequence of the murine interferon-inducible RNA-dependent protein kinase PKR deduced from genomic clones. Gene 153:283–284

    PubMed  CAS  Google Scholar 

  • Thomis DC, Samuel CE (1995) Characterization of the intermolecular autophosphorylation of PKR, the interferon-inducible RNA-dependent protein kinase. J Virol 69:5195–5198

    PubMed  CAS  Google Scholar 

  • Thomis DC, Doohan JP, Samuel CE (1992) Mechanism of interferon action: cDNA structure, expression and regulation of the interferon-induced, RNA-dependent Pl/eIF-2a protein kinase from human cells. Virology 188:33–46

    PubMed  CAS  Google Scholar 

  • Tillotson L, Shatkin AJ (1992) Reovirus polypeptide cr3 and N-terminal myristoylation of polypeptide µl are required for site-specific cleavage to pIC in transfected cells. J Virol 66:2180–2186

    PubMed  CAS  Google Scholar 

  • Townsend A, Bodmer H (1989) Antigen recognition by class I restricted T lymphocytes. Annu Rev Immunol 7:601–624

    PubMed  CAS  Google Scholar 

  • Vilcek J, Sen GC (1996) Interferons and other cytokines. In: Fields BN, Knipe DM, Howley PM (eds) Fundamental virology. Lippincott-Raven, Philadelphia, pp 341–365

    Google Scholar 

  • Wiebe ME, Joklik WK (1975) The mechanism of inhibition of reovirus replication by interferon. Virology 66:229–240

    PubMed  CAS  Google Scholar 

  • Williams BRG, Silverman RH (1985) The 2–5A system: molecular and clinical aspects of the interferon-regulated pathway. Prog Clin Biol Res 202:1–478

    Google Scholar 

  • Winship TR, Marcus PI (1980) Interferon induction by viruses. VI. Reovirus: virion genome dsRNA as the interferon inducer in aged chick embryo cells. J Interferon Res 1:155–167

    PubMed  CAS  Google Scholar 

  • Yang YL, Reis LFL, Pavlovic J, Aguzzi A, Schafer R, Kumar A, Williams BRG, Aguet M, Weissmann C (1995) Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 14:6095–6106

    PubMed  CAS  Google Scholar 

  • Yue Z, Shatkin AJ (1997) Double-stranded RNA-dependent protein kinase (PKR) is regulated by reovirus structural proteins. Virology 234:364–371

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1990) The binary logic of antigen processing and presentation to T cells. Cell 62:203–206

    PubMed  CAS  Google Scholar 

  • Young HA (1996) Regulation of interferon-y gene expression. J Interferon Cytokine Res 16:563–568

    PubMed  CAS  Google Scholar 

  • Zhou A, Hassel BA, Silverman RH (1993) Expression cloning of 2–5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72:753–765

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Samuel, C.E. (1998). Reoviruses and the Interferon System. In: Tyler, K.L., Oldstone, M.B.A. (eds) Reoviruses II. Current Topics in Microbiology and Immunology, vol 233/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72095-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72095-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72097-0

  • Online ISBN: 978-3-642-72095-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics