Skip to main content

Enzymatic and Control Functions of Reovirus Structural Proteins

  • Chapter
Book cover Reoviruses I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 233/1))

Abstract

Viruses have evolved in many diverse ways in order to utilize efficiently their limited genetic information and successfully overcome the various defense mechanisms of different hosts. For the multisegmented dsRNA-containing reoviruses, this has apparently been accomplished at the level of the structural proteins rather than the mRNA. In reovirus infections, only full-length, unspliced viral mRNA are produced and, with one exception, each contains a single translational open reading frame. However, most, if not all, of the virion structural proteins also have enzymatic activities and/or other functions that are essential in the reovirus life cycle (Table 1). This structural protein pleiotropy is summarized in this chapter, which is based on the many studies that have correlated virion proteins with functional activities and assigned them to specific reovirus genome segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acs G, Klett H, Schonberg M, Christman J, Levin DH, Silverstein SC (1971) Mechanism of reovirus double-stranded RNA synthesis in vivo and in vitro. J Virol 8: 684–689

    PubMed  CAS  Google Scholar 

  • Antczak JB, Chmelo R, Pickup DJ, Joklik WK (1982) Sequences at both termini of the ten genes of reovirus serotype 3 (strain Dearing). Virology 121: 307–319

    PubMed  CAS  Google Scholar 

  • Antczak JB, Joklik WK (1992) Reovirus genome segment assortment into progeny genomes studied by the use of monoclonal antibodies directed against reovirus proteins. Virology 187: 760–776

    PubMed  CAS  Google Scholar 

  • Armstrong GD, Paul RW, Lee PW (1984) Studies on reovirus receptors of L cells: virus binding characteristics and comparison with reovirus receptors of erythrocytes. Virology 138: 37–48

    PubMed  CAS  Google Scholar 

  • Babiss LE, Luftig RB, Weatherbee JA, Weihing RR, Ray UR, Fields BN (1979) Reovirus serotypes 1 and 3 differ in their in vitro association with microtubules. J Virol 30: 863–874

    PubMed  CAS  Google Scholar 

  • Banerjee AK, Shatkin AJ (1970) Transcription in vitro by reovirus-associated ribonucleic acid-dependent polymerase. J Virol 6: 1–11

    PubMed  CAS  Google Scholar 

  • Bartlett JA, Joklik WK (1988) The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein X1. Virology 167: 31–37

    PubMed  CAS  Google Scholar 

  • Bartlett NM, Gillies SC, Bullivant S, Bellamy AR (1974) Electron microscope study of reovirus reaction cores. J Virol 14: 315–326

    PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Jayasuriya A, Chatterjee D, Sonenberg N, Maize JV Jr, Fields BN (1985) Sequence of the reovirus haemagglutinin predicts a coiled-coil structure. Nature 315: 421–423

    PubMed  CAS  Google Scholar 

  • Beattie E, Denzler K, Tartaglia J, Perkus M, Paoletti E, Jacobs BL (1995) Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. J Virol 69: 499–505

    PubMed  CAS  Google Scholar 

  • Belli BA, Samuel CE (1993) Biosynthesis of reovirus-specified polypeptides. Identification of regions of the bicistronic reovirus-S1 messenger-RNA that affect the efficiency of translation in animal cells. Virology 193: 16–27

    PubMed  CAS  Google Scholar 

  • Bisaillon M, Bergeron J, Lemay G (1997) Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus 1. J Biol Chem 272: 18298–18303

    PubMed  CAS  Google Scholar 

  • Bodkin DK, Fields BN (1989) Growth of reovirus in intestinal tissue: role of the L2 and S1 genes. J Virol 63: 1188–1193

    PubMed  CAS  Google Scholar 

  • Bodkin DK, Nibert MK, Fields BN (1989) Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice. J Virol 63: 4676–4681

    PubMed  CAS  Google Scholar 

  • Borman AM, Kirchweger R, Ziegler E, Rhoads RE, Skern T, Kean KM (1997). eIF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3:186–196

    Google Scholar 

  • Borsa J, Graham AF (1968) Reovirus RNA polymerase activity in purified virions. Biochem Biophys Res Commun 33: 895–901

    PubMed  CAS  Google Scholar 

  • Borsa J, Grover J, Chapman JD (1970) Presence of nucleoside triphosphate phosphohydrolase activity in purified virions of reovirus. J Virol 6: 295–302

    PubMed  CAS  Google Scholar 

  • Borsa J, Copps TP, Sargent MD, Long DG, Chapman JD (1973) New intermediate subviral particles in the in vitro uncoating of reovirus virions by chymotrypsin. J Virol 11: 552–564

    PubMed  CAS  Google Scholar 

  • Borsa J, Long DG, Sargent MD, Copps TP, Chapman JD (1974) Reovirus transcriptase activation in vitro: involvement of an endogenous uncoating activity in the second stage of the process. Inter-virology 4: 171–188

    CAS  Google Scholar 

  • Borsa J, Sargent MD, Lievaart PA, Copps TP (1981) Reovirus: evidence for a second step in the intracellular uncoating and transcriptase activation process. Virology 111: 191–200

    PubMed  CAS  Google Scholar 

  • Bruck C, Co MS, Slaoui M, Gaulton GN, Smith T, Fields BN, Mullins JI, Greene MI (1986) Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA 83: 6578–6582

    PubMed  CAS  Google Scholar 

  • Bruenn JA (1991) Relationships among the positive strand and double-stranded RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19: 217–226

    PubMed  CAS  Google Scholar 

  • Canning WM, Fields BN (1983) Ammonium chloride prevents lytic growth of reovirus and helps to establish persistent infection in mouse L cells. Science 219: 987–988

    PubMed  CAS  Google Scholar 

  • Carter C, Stoltzfus CM, Banerjee AK, Shatkin AJ (1974) Origin of reovirus oligo(A). J Virol 13: 1331–1337

    PubMed  CAS  Google Scholar 

  • Carter C, Lin B, Metley M (1980) Polyadenylation of reovirus proteins. J Biol Chem 255: 6479–6485

    PubMed  CAS  Google Scholar 

  • Chang C-T, Zweerink HJ (1971) Fate of parental reovirus in infected cell. Virology 46: 544–555

    PubMed  CAS  Google Scholar 

  • Chappell JD, Gunn VL, Wetzel JD, Baer GS, Dermody TS (1997) Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment proteinal. J Virol 71: 1834–1841

    PubMed  CAS  Google Scholar 

  • Choi AHC (1994) Internalization of virus binding proteins during entry of reovirus into K562 erythroleukemia cells. Virology 200: 301–306

    PubMed  CAS  Google Scholar 

  • Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354: 37–43

    PubMed  CAS  Google Scholar 

  • Chow N-L, Shatkin AJ (1975) Blocked and unblocked 5’ termini in reovirus genome RNA. J Virol 15: 1057–1064

    PubMed  CAS  Google Scholar 

  • Clemens MJ (1996) Protein kinases that phosphorylate eIF2 and eIF2B and their role in eukaryotic cell translational control. In: Hershey J, Mathews M, Sonenberg N (eds) Translational control. CSHL, Plainview, NY, pp 139–172

    Google Scholar 

  • Cleveland DR, Zarbl H, Millward S (1986) Reovirus guanylyltransferase is L2 gene product. J Virol 60: 307–311

    PubMed  CAS  Google Scholar 

  • Co MS, Gaulton GN, Fields BN, Greene MI (1985a) Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. Proc Natl Acad Sci USA 82: 1494–1498

    PubMed  CAS  Google Scholar 

  • Co MS, Gaulton GN, Tominaga A, Homcy CJ, Fields BN, Greene MI (1985b) Structural similarities between the mammalian (3-adrenergic and reovirus type 3 receptors. Proc Natl Acad Sci USA 82: 5315–5318

    PubMed  CAS  Google Scholar 

  • Coombs KM (1996) Identification and characterization of a double-stranded RNA reovirus temperature-sensitive mutant defective in minor core protein 112. J Virol 70: 4237–4245

    PubMed  CAS  Google Scholar 

  • Cox DC, Shaw JE (1974) Inhibition of initiation of cellular DNA synthesis after reovirus infection. J Virol 13: 760–761

    PubMed  CAS  Google Scholar 

  • Dales S (1963) Association between the spindle apparatus and reovirus. Proc Natl Acad Sei USA 50: 268–275

    CAS  Google Scholar 

  • Dales S (1965) The uptake and development of reovirus in strain L cells followed with labelled viral ribonucleic acid and ferritin-antibody conjugate. Virology 25: 193–211

    PubMed  CAS  Google Scholar 

  • Danis C, Lemay G (1993) Protein synthesis in different cell lines infected with orthoreovirus serotype 3: Inhibition of host-cell protein synthesis correlates with accelerated viral multiplication and cell killing. Biochem Cell Biol 71: 81–85

    Google Scholar 

  • Denzler KL, Jacobs BL (1994) Site-directed mutagenic analysis of reovirus a3 protein binding to dsRNA. Virology 204: 190–199

    PubMed  CAS  Google Scholar 

  • Dermody TS, Schiff LA, Nibert ML, Coombs KM, Fields BN (1991) The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes: characterization of reovirus core protein a2. J Virol 65: 5721–5731

    PubMed  CAS  Google Scholar 

  • Detjen BM, Walden WE, Thach RE (1982) Translational specificity in reovirus-infected mouse fibroblasts. J Biol Chem 257: 9855–9860

    PubMed  CAS  Google Scholar 

  • Drayna D, Fields BN (1982) Activation and characterization of the reovirus transcriptase: genetic analysis. J Virol 41: 110–118

    PubMed  CAS  Google Scholar 

  • Dryden KA, Wang G, Yeager M, Nilbert ML, Coombs KM, Furlong DB, Fields BN, Baker TS (1993) Early steps in reovirus infection are associated with dramatic changes in supermolecular structure and protein conformation: analysis of virion and subviral particles by cryoelectron microscopy and image reconstitution. J Cell Biol 122: 1023–1041

    PubMed  CAS  Google Scholar 

  • Duncan RF (1990) Protein synthesis initiation factor modifications during viral infections: implications for translational control. Electrophoresis 11: 219–227

    PubMed  CAS  Google Scholar 

  • Duncan R, Horne D, Strong JE, Leone G, Pon RT, Yeung MC, Lee PWK (1991) Conformational and functional analysis of the carboxyl-terminal globular head of the reovirus cell attachment protein. Virology 182: 810–819

    PubMed  CAS  Google Scholar 

  • Ensminger WD, Tamm I (1969a) Cellular DNA and protein synthesis in reovirus-infected cells. Virology 39: 357–359

    PubMed  CAS  Google Scholar 

  • Ensminger WD, Tamm I (1969b) The step in cellular DNA synthesis blocked by reovirus infection. Virology 39: 935–938

    PubMed  CAS  Google Scholar 

  • Epstein RL, Powers ML, Rogart RB, Weiner HL (1984) Binding of iodine-125 labelled reovirus to cell surface receptors. Virology 133: 46–55

    PubMed  CAS  Google Scholar 

  • Ernst H, Filipowicz W, Shatkin AJ (1983) Initiation by RNA polymerase II and formation of runoff transcripts containing unblocked and unmethylated 5’ termini. Proc Natl Acad Sci USA 81: 2172–2179

    Google Scholar 

  • Fajardo JE, Shatkin AJ (1990a) Effects of elongation on the translation of a reovirus bicistronic mRNA. Enzyme 44: 235–243

    PubMed  CAS  Google Scholar 

  • Fajardo JE, Shatkin AJ (1990b) Expression of the two reovirus S1 gene products in transfected mammalian cells. Virology 178: 223–231

    PubMed  CAS  Google Scholar 

  • Fausnaugh J, Shatkin AJ (1990) Active site localization in a viral mRNA capping enzyme. J Biol Chem 265: 7669–7672

    PubMed  CAS  Google Scholar 

  • Fernandes J, Tang D, Leone G, Lee PW (1994) Binding of reovirus to receptor leads to conformation changes in viral capsid proteins that are reversible upon virus detachment. J Biol Chem 269:17043–17047

    Google Scholar 

  • Fields BN, Eagle H (1973) The pH-dependence of reovirus synthesis. Virology 52: 581–583

    PubMed  CAS  Google Scholar 

  • Fraser RDB, Furlong DB, Trus BL, Nibert ML, Fields BN, Steven AC (1990) Molecular structure of the cell attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions. J Virol 64: 2990–3000

    PubMed  CAS  Google Scholar 

  • Furlong DB, Nibert ML, Fields BN (1988) Sigma I protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol 62: 246–256

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Shatkin Al (1976) Differential synthesis of blocked and unblocked 5’-termini in reovirus mRNA: effect of pyrophosphate and pyrophosphatase. Proc Nati Acad Sci USA 73: 3448–3452

    CAS  Google Scholar 

  • Furuichi Y, Shatkin AJ (1977) 5’-Termini of reovirus mRNA: ability of viral cores to form caps post-transcriptionally. Virology 77:566–578

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Muthukrishnan S, Shatkin AJ (1975a) Reovirus messenger RNA contains a methylated blocked 5’-terminal structure m7G(5’)ppp(5’)GmpCp. Proc Natl Acad Sci USA 72: 362–366

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Muthukrishnan S, Shatkin AJ (1975b) 5’-Terminal m7G(5)ppp(5’)Gmp in vivo: identification in reovirus genome RNA. Proc Natl Acad Sci USA 72:742–745

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Muthukrishnan S, Tomasz J, Shatkin AJ (1976) Mechanism of formation of reovirus mRNA 5’-terminal blocked and methylated sequence m’GpppGmpC. J Biol Chem 251: 5043–5053

    PubMed  CAS  Google Scholar 

  • Gaulton GN, Greene MI (1989) Inhibition of cellular DNA synthesis by reovirus occurs through a receptor-linked signaling pathway that is mimicked by antiidiotypic, antireceptor antibody. J Exp Med 169: 197–211

    PubMed  CAS  Google Scholar 

  • Gentsch JR, Hatfield JW (1984) Saturable attachment sites for type 3 mammalian reovirus on murine L cells and human HeLa cells. Virus Res 1: 401–414

    PubMed  CAS  Google Scholar 

  • Giantini M, Shatkin AJ (1989) Stimulation of chloramphenical acetyltransferase mRNA translation by reovirus capsid polypeptide 63 in cotransfected COS cells. J Virol 63: 2415–2421

    PubMed  CAS  Google Scholar 

  • Gilmore R, Coffey MC, Leone G, McLure K, Lee PWK (1996) Co-translational trimerization of the reovirus cell attachment protein. EMBO J 15: 2651–2658

    PubMed  CAS  Google Scholar 

  • Gomatos PJ (1967) RNA synthesis in reovirus-infected L929 mouse fibroblasts. Proc Natl Acad Sci USA 58: 1798–1805

    PubMed  CAS  Google Scholar 

  • Gomatos PJ, Tams I (1963) Macromolecular synthesis in reovirus-infected L cells. Biochim Biophys Acta 72: 651–653

    PubMed  CAS  Google Scholar 

  • Hand R, Ensminger WD, Tamm I (1971) Cellular DNA replication in infections with cytocidal RNA viruses. Virology 44: 527–536

    PubMed  CAS  Google Scholar 

  • Hayes EC, Lee PWK, Miller SE, Joklik WK (1981) The interaction of a series of hybridoma IgGs with reovirus particles: demonstration that the core protein k2 is exposed on the particle surface. Virology 108: 147–155

    PubMed  CAS  Google Scholar 

  • Hazelton PR, Coombs KM (1995) The reovirus mutant tsA279 has temperature-sensitive lesion in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in transmembrane transport. Virology 207: 46–58

    PubMed  CAS  Google Scholar 

  • Hentze MW (1997) eIF4G: a multipurpose ribosome adaptor? Science 275:500–501

    PubMed  CAS  Google Scholar 

  • Hooper JW, Fields BN (1996a) Monoclonal antibodies to reovirus el and pl proteins inhibit chromium release from mouse L cells. J Virol 70: 672–677

    PubMed  CAS  Google Scholar 

  • Hooper JW, Fields BN (1996b) Role of the pl protein in reovirus stability and capacity to cause chromium release from host cells. J Virol 70: 459–467

    PubMed  CAS  Google Scholar 

  • Hruby DE, Franke CA (1993) Viral acylproteins: greasing the wheels of assembly. Trends Microbiol 1: 20–25

    PubMed  CAS  Google Scholar 

  • Huismans H, Joklik WK (1976) Reovirus-coded polypeptides in infected cells: isolation of two native monomeric polypeptides with affinity for single-stranded and double-stranded RNA, respectively. Virology 70: 411–424

    PubMed  CAS  Google Scholar 

  • Imani F, Jacobs BL (1988) Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 63 protein. Proc Natl Acad Sci USA 85: 7887–7891

    PubMed  CAS  Google Scholar 

  • Jayasuriya AK, Nibert ML, Fields BN (1988) Complete nucleotide sequence of the M2 gene segment of reovirus type 3 Dearing and analysis of its protein product µl. Virology 163: 591–602

    PubMed  CAS  Google Scholar 

  • Joklik WK (1972) Studies on the effect of chymotrypsin on reovirions. Virology 49: 700–715

    PubMed  CAS  Google Scholar 

  • Joklik WK (1981) Structure and function of the reovirus genome. Microbiol Rev 45: 483–501

    PubMed  CAS  Google Scholar 

  • Joklik WK (1995) What reassorts when reovirus genome segments reassort? J Biol Chem 270: 4181–4184

    PubMed  CAS  Google Scholar 

  • Kapuler AM (1970) An extraordinary temperature dependence of the reovirus transcriptase. Biochemistry 9: 4453–4457

    PubMed  CAS  Google Scholar 

  • Kapuler AM, Mendelsohn N, Klett H, Acs G (1970) Four base-specified nucleoside 5’-triphosphatases in the subviral core of reovirus. Nature 225: 1209–1213

    PubMed  CAS  Google Scholar 

  • Kibler KV, Shors T, Perkins KB, Zeman CC, Banaszak MP, Biesterfeldt J, Langland JO, Jacobs BL (1997) Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. J Virol 71: 1992–2003

    PubMed  CAS  Google Scholar 

  • Koonin EV (1993) Computer-assisted identification of a putative methyltransferase domain in ns5 protein of flaviviruses and k2 protein of reovirus. J Gen Virol 74: 733–740

    PubMed  CAS  Google Scholar 

  • Kozak M (1977) Nucleotide sequences of 5’-terminal ribosome-protected initiation regions from two reovirus messages. Nature 269: 390–394

    CAS  Google Scholar 

  • Kozak M (1981a) Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. In: Shatkin AJ (ed) Initiation signals in viral gene expression. Current Topics in Microbiology and Immunology, vol. 93. pp 81–123

    Google Scholar 

  • Kozak M (1981b). Possible role of flanking nucleotides in recognition of AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res 9: 5233–5262

    PubMed  CAS  Google Scholar 

  • Kozak M (1982) Analysis of ribosome binding sites from the SI message of reovirus: initiation at the first and second AUG codons. J Mol Biol 156: 807–820

    PubMed  CAS  Google Scholar 

  • Kozak M (1991) Structural features of eucaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19867–19870

    PubMed  CAS  Google Scholar 

  • Kozak M, Shatkin AJ (1977) Sequence of two 5’-terminal ribosomes-protected fragments from reovirus messenger RNAs. J Mol Biol 112: 75–96

    PubMed  CAS  Google Scholar 

  • Kozak M, Shatkin AJ (1978) Migration of 405 ribosomal subunits on messenger RNA in the presence of edeine. J Biol Chem 253: 6568–6577

    PubMed  CAS  Google Scholar 

  • Krystal G, Winn P, Millward S, Sakuma S (1975) Evidence for phosphoproteins in reovirus. Virology 64: 505–512

    PubMed  CAS  Google Scholar 

  • Krystal G, Perrault J, Graham AF (1976) Evidence for a glycoprotein in reovirus. Virology 72: 308–321

    PubMed  CAS  Google Scholar 

  • Kudo H, Graham AF (1966) Selective inhibition of reovirus induced RNA in L cells. Biochem Biophys Res Commun 24: 150–155

    PubMed  CAS  Google Scholar 

  • Langberg SR, Moss B (1981) Post-transcriptional modification of mRNA: purification and characterization of cap I and cap II RNA (nucleoside-2’-)-methyltransferases from HeLa cells. J Biol Chem 256: 10054–10061

    PubMed  CAS  Google Scholar 

  • Lau RY, Van Alstyne D, Berckmans R, Graham AF (1975) Synthesis of reovirus-specific polypeptides in cells pretreated with cycloheximide. J Virol 16: 470–478

    PubMed  CAS  Google Scholar 

  • Lee PWK, Leone G (1993) Reovirus protein 61: from cell attachment to protein oligomerization and folding mechanisms. Bioessays 16: 199–206

    Google Scholar 

  • Lee PWK, Hayes EC, Joklik WK (1981a) Protein al is the reovirus cell attachment protein. Virology 108: 156–163

    PubMed  CAS  Google Scholar 

  • Lee PWK, Hayes EC, Joklik WK (1981b) Characterization of anti-reovirus immunoglobulin secreted by cloned hybridoma cell lines. Virology 108: 134–146

    PubMed  CAS  Google Scholar 

  • Lee SB, Esteban M (1994) The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199: 491–496

    PubMed  CAS  Google Scholar 

  • Lemay G, Danis C (1994) Reovirus T.1 protein: affinity for double-stranded nucleic acids by a small amino- terminal region of the protein independent from the zinc finger motif. J Gen Virol 75: 3261–3266

    PubMed  CAS  Google Scholar 

  • Lemay G, Millward S (1986) Expression of the cloned S4 gene of reovirus serotype 3 in transformed eucaryotic cells: enrichment of the viral protein in the crude initiation factor fraction. Virus Res 6: 133–140

    PubMed  CAS  Google Scholar 

  • Lemieux R, Zarbl H, Millward S (1984) mRNA discrimination in extracts from uninfected and reovirusinfected L-cells. J Virol 51:215–222

    PubMed  CAS  Google Scholar 

  • Lemieux R, Lemay G. Millward S (1987) The viral protein sigma 3 participates in translation of late viral mRNA in reovirus-infected L cells. J Virol 61: 2472–2479

    PubMed  CAS  Google Scholar 

  • Leone G, Duncan R, Lee PWK (1991a) Trimerization of the reovirus cell attachment protein (al) induces conformational changes in al necessary for its cell-binding function. Virology 184: 758–761

    PubMed  CAS  Google Scholar 

  • Leone G, Mah DCW, Lee PWK (1991b) The incorporation of reovirus cell attachment protein al into virions requires the amino-terminal hydrophobic tail and the adjacent heptad repeat region. Virology 182: 346–350

    PubMed  CAS  Google Scholar 

  • Leone G, Maybaum L, Lee PWK (1992) The reovirus cell attachment protein possesses two independently active trimerization domains: basis of dominant negative effects. Cell 71: 479–488

    PubMed  CAS  Google Scholar 

  • Leone G, Coffey MC, Gilmore R, Duncan R, Maybaum L, Lee PWK (1996) C-terminal trimerization, but not N-terminal trimerization, of the reovirus cell attachment protein is a posttranslational and Hsp70/ATP-dependent process. J Biol Chem 271: 8466–8471

    PubMed  CAS  Google Scholar 

  • Levin DH, Mendelsohn N, Schonberg M, Klett H, Silverstein S, Kapuler AM (1970) Properties of RNA transcriptase in reovirus subviral particles. Proc Natl Acad Sci USA 66: 890–897

    PubMed  CAS  Google Scholar 

  • Liu M, Mattion NM, Estes MK (1992) Rotavirus VP3 expressed in insect cells possesses guanylytransferase activity. Virology 188: 77–84

    PubMed  CAS  Google Scholar 

  • Lloyd RM, Shatkin AJ (1992) Translation stimulation by reovirus polypeptide a3: substitution for VAI RNA and inhibition of phosphorylation of the e.. subunit of eukaryotic initiation factor 2. J Virol 66: 6878–6884

    PubMed  CAS  Google Scholar 

  • Lucia-Jandris P, Hooper JW, Fields BN (1993) Reovirus M2 gene is associated with chromium release from mouse L cells. J Virol 67: 5339–5345

    PubMed  CAS  Google Scholar 

  • Luftig RB, Kilham S, Hay A, Zweerink HJ, Joklik WK (1972) An ultrastructure study of virions and cores of reovirus type 3. Virology 48: 170–181

    PubMed  CAS  Google Scholar 

  • Mabrouk T, Lemay G (1994) Mutations in a CCHC zinc-binding motif of the reovirus a3 protein decrease its intracellular stability. J Virol 68: 5287–5290

    PubMed  CAS  Google Scholar 

  • Mah DC, Leone G, Jankowski JM, Lee PW (1990) The N-terminal quarter of reovirus cell attachment protein al possesses intrinsic virion-anchoring function. Virology 179: 95–103

    PubMed  CAS  Google Scholar 

  • Mao ZX, Joklik WK (1991) Isolation and enzymatic characterization of protein 22, the reovirus guanylyltransferase. Virology 185: 377–386

    PubMed  CAS  Google Scholar 

  • Maratos-Flier E, Goodman MJ, Murry AH, Kahn CR (1986) Ammonium inhibits processing and cytotoxicity of reovirus, a nonenveloped virus. J Clin Invest 78: 1003–1007

    PubMed  CAS  Google Scholar 

  • Martines CG, Guinea R, Benavente J, Carrasco L (1996) The entry of reovirus into L cells is dependent on vacuolar proton-ATPase activity. J Virol 70: 576–579

    Google Scholar 

  • Martinez-Costas J, Varela R, Benavente J (1995) Endogenous enzymatic activities of the avian reovirus 51133: identification of the viral capping enzyme. Virology 206: 1017–1026

    PubMed  CAS  Google Scholar 

  • Metcalf P, Cyrklaff M, Adrian M (1991) The 3-dimensional structure of reovirus obtained by cryoelectron microscopy. EMBO J 10: 3129–3136

    PubMed  CAS  Google Scholar 

  • Miller JE, Samuel CE (1992) Proteolytic cleavage of the reovirus sigma 3 protein results in enhanced double-stranded RNA-binding activity: identification of a repeated basic amino acid motif within the C-terminal binding region. J Virol 66: 5347–5356

    PubMed  CAS  Google Scholar 

  • Miura K-I, Watanabe K, Sugiura M, Shatkin AJ (1974) The 5’-terminal nucleotide sequences of the double-stranded RNA of human reovirus. Proc Natl Acad Sci USA 71: 3979–3983

    PubMed  CAS  Google Scholar 

  • Mora M, Partin K, Bhatia M, Partin J, Carter C (1987) Association of reovirus proteins with the structural matrix of infected cells. Virology 159: 265–277

    PubMed  CAS  Google Scholar 

  • Morgan EM, Kingsbury DW (1980) Pyridoxal phosphate as a probe of reovirus transcriptase. Biochemistry 19: 484–489

    PubMed  CAS  Google Scholar 

  • Morgan EM, Kingsbury DW (1981) Reovirus enzymes that modify messenger RNA are inhibited by perturbation of the lambda proteins. Virology 113: 565–572

    PubMed  CAS  Google Scholar 

  • Morozov SY (1989) A possible relationship of reovirus putative RNA polymerase to polymerase of positive-strand RNA viruses. Nucleic Acids Res 17: 5394–5394

    PubMed  CAS  Google Scholar 

  • Munemitsu SM, Samuel CE (1984) Biosynthesis of reovirus-specified polypeptides. Multiplication rate but not yield of reovirus serotypes 1 and 3 correlates with the level of virus-mediated inhibition of cellular protein synthesis. Virology 136: 133–143

    PubMed  CAS  Google Scholar 

  • Munoz A, Alonso MA, Carrasco L (1985) The regulation of translation in reovirus-infected cells. J Gen Virol 66: 2161–2170

    PubMed  CAS  Google Scholar 

  • Nagata L, Masri SA, Pon RT, Lee PWK (1987) Analysis of functional domains on reovirus cell attachment protein al using cloned S1 gene deletion mutants. Virology 160: 162–168

    PubMed  CAS  Google Scholar 

  • Nakashima K, LaFiandra AJ, Shatkin AJ (1979) Differential dependence of reovirus-associated enzyme activities on genome RNA as determined by psoralen photosensitivity. J Biol Chem 254: 8007–8014

    PubMed  CAS  Google Scholar 

  • Nibert ML, Fields BN (1992) A carboxy-terminal fragment of protein p1/µ1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 66: 6408–6418

    PubMed  CAS  Google Scholar 

  • Nibert ML, Dermody TS, Fields BN (1990) Structure of the reovirus cell-attachment protein: a model for the domain organization of al. J Virol 64: 2976–2989

    PubMed  CAS  Google Scholar 

  • Nibert ML, Schiff LA, Fields BN (1991) Mammalian reoviruses contain a myristoylated structural protein. J Virol 65: 1960–1967

    PubMed  CAS  Google Scholar 

  • Nibert ML, Schiff LA, Fields BN (1996) Reoviruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 1557–1596

    Google Scholar 

  • Noble S, Nibert ML (1997) Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein X.1..J Virol 71: 2182–2191

    CAS  Google Scholar 

  • Nonoyama M, Millward S, Graham AF (1974) Control of transcription of the reovirus genome. Nucleic Acids Res 1: 373–385

    PubMed  CAS  Google Scholar 

  • Oberhaus SM, Smith RL, Clayton GH, Dermody TS, Tyler KL (1997) Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J Virol 71: 2100–2106

    PubMed  CAS  Google Scholar 

  • Paul RW, Lee PWK (1987) Glycophorin is the reovirus receptor on human erythrocytes. Virology 159: 94–101

    PubMed  CAS  Google Scholar 

  • Paul RW, Choi AHC, Lee PWK (1989) The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172: 832–835

    Google Scholar 

  • Pett DM, Vanaman TC, Joklik WK (1973) Studies on the amino-and carboxyl-terminal amino acid sequences of reovirus capsid polypeptides. Virology 52: 174–186

    PubMed  CAS  Google Scholar 

  • Powell KFH, Harvey JD, Bellamy AR (1984) Reovirus RNA transcriptase: evidence for a conformational change during activation of the core particle. Virology 137: 1–8

    PubMed  CAS  Google Scholar 

  • Qiao X, Qiao J, Mindich L (1997) Stoichiometric packaging of the three genomic segments of dsRNA bacteriophage 4)6. Proc Natl Acad Sci USA 94: 4074–4079

    PubMed  CAS  Google Scholar 

  • Raju RV, Kalra J, Sharma RK (1994) Purification and properties of bovine spleen N-myristoyl-CoA protein:N-myristoyltransferase. J Biol Chem 269: 12080–12083

    PubMed  CAS  Google Scholar 

  • Rebai N, Almazan G, Wei L, Greene MI, Saragovi HU (1996) A p65/95 neural surface receptor is expressed at the S-G2 phase of the cell cycle and defines distinct populations. Eur.f Neurosci 8: 273–281

    CAS  Google Scholar 

  • Rodgers SE, Barton ES, Oberhaus SM, Pike B, Gibson CA, Tyler KL, Dermody TS (1997) Reovirusinduced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bel-2. J Virol 71: 2540–2546

    PubMed  CAS  Google Scholar 

  • Roner MR, Roner LA, Joklik WK (1993) Translation of reovirus RNA species ml can initiate at either of the first two in-frame initiation codons. Proc Natl Acad Sci USA 90: 8947–8951

    PubMed  CAS  Google Scholar 

  • Saragovi HU, Bhandoola A, Lemercier MM, Akbar GK, Greene MI (1995) A receptor that subserves reovirus binding can inhibit lymphocyte proliferation triggered by mitogenic signals. DNA Cell Biol 14: 653–664

    PubMed  CAS  Google Scholar 

  • Sawutz DG, Bassel-Duby R, Homcy CJ (1987) High affinity binding of reovirus type 3 to cells that lack beta adrenergic receptor activity. Life Sci 40: 399–406

    PubMed  CAS  Google Scholar 

  • Schiff LA, Fields BN (1990) Reoviruses and their replication. In: Fields B (ed) Virology. Raven, New York, pp 1275–1306

    Google Scholar 

  • Schiff LA, Nibert ML, Co MS, Brown E, Fields BN (1988) Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein a3. Mol Cell Biol 8: 273–283

    PubMed  CAS  Google Scholar 

  • Seliger LS, Zheng K, Shatkin AJ (1987) Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J Biol Chem 262: 16289–16293

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1981) Reovirus inhibition of cellular DNA synthesis: role of the SI gene. J Virol 38: 389–392

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1982) Reovirus inhibition of cellular RNA and protein synthesis: role of the S4 gene. Virology 122: 381–391

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1983) Pathogenesis of reovirus infection. In: Joklik W (ed) The reoviridae. Plenum, New York, pp 229–285

    Google Scholar 

  • Sharpe AH, Chen LB, Fields BN (1982) The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. Virology 120: 399–411

    PubMed  CAS  Google Scholar 

  • Shatkin AJ (1974) Methylated messenger RNA synthesis in vitro by purified reovirus. Proc Natl Acad Sci USA 71: 3204–3207

    PubMed  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9: 645–653

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Kozak M (1983) Biochemical aspects of reovirus transcription and translation. In: Joklik WK (ed) The reoviridae. Plenum, New York, pp 43–54

    Google Scholar 

  • Shatkin Ai, LaFiandra AJ (1972) Transcription by infectious subviral particles of reovirus. J Virol 10: 698–706

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Sipe JD (1968) RNA polymerase activity in purified reoviruses. Proc Natl Acad Sci USA 61: 1462–1469

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Furuichi Y, LaFiandra AJ, Yamakawa M (1983) Initiation of mRNA synthesis and 5’-terminal modification of reovirus transcripts. In: Compans R, Bishop D (eds) Double-stranded RNA viruses. Elsevier, New York, pp 43–54

    Google Scholar 

  • Shaw JE, Cox DC (1973) Early inhibition of cellular DNA synthesis by high multiplicities of infections and UV-irradiated reovirus. J Virol 12: 704–710

    PubMed  CAS  Google Scholar 

  • Shen Y, Shenk T (1995) Viruses and apoptosis. Curr Opin Genet Dev 5: 105–111

    PubMed  CAS  Google Scholar 

  • Shepard DA, Ehnstrom JG, Schiff LA (1995) Association of reovirus outer capsid protein 63 and µl causes a conformational change that renders cr3 protease sensitive. J Virol 69: 8180–8184

    PubMed  CAS  Google Scholar 

  • Shepard DA, Ehnstrom JG, Skinner PJ, Schiff LA (1996) Mutations in the zinc-binding motif of the reovirus capsid protein 63 eliminate its ability to associate with capsid protein pl. J Virol 70: 2065–2068

    PubMed  CAS  Google Scholar 

  • Shuman S, Liu Y, Schwer B (1994) Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci USA 91: 12046–12050

    PubMed  CAS  Google Scholar 

  • Silverstein SC, Dales S (1968) The penetration of reovirus RNA and initiation of its genetic function in L-strain fibroblasts. J Cell Biol 36: 197–230

    Google Scholar 

  • Silverstein SC, Astell C, Levin DH, Schonberg M, Acs G (1972) The mechanisms of reovirus uncoating and gene activation in vivo. Virology 47: 797–806

    PubMed  CAS  Google Scholar 

  • Skehel JE, Joklik WK (1969) Studies on the in vitro transcription of reovirus RNA catalyzed by reovirus cores. Virology 39: 822–831

    PubMed  CAS  Google Scholar 

  • Skup D, Millward S (1980a) mRNA capping enzymes are masked in reovirus progeny subviral particles. J Virol 34:490–496

    PubMed  CAS  Google Scholar 

  • Skup D, Millward S (1980b) Reovirus-induced modification of cap dependent translation in infected L cells. Proc Natl Acad Sci USA 77: 152–156

    PubMed  CAS  Google Scholar 

  • Skup D, Zarbl H, Millward S (1981) Regulation of translation in L-cells infected with reovirus. J Mol Biol 151: 35–55

    PubMed  CAS  Google Scholar 

  • Smith RE, Zweerink HJ, Joklik WK (1969) Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39: 791–798

    PubMed  CAS  Google Scholar 

  • Spandidos DA, Krystal G, Graham AF (1976) Regulated transcription of the genomes of defective virions and temperature-sensitive mutants of reovirus. J Virol 18: 7–19

    PubMed  CAS  Google Scholar 

  • Spendlove RS, Lennette EH, Chin JN, Knight CO (1964) Effect of antibiotic agents on intracellular reovirus antigen. Cancer Res 24: 1826–1833

    PubMed  CAS  Google Scholar 

  • Starnes MC, Joklik WK (1993) Reovirus protein 23 is a poly(C)-dependent poly(G) polymerase. Virology 193: 356–366

    PubMed  CAS  Google Scholar 

  • Strong JE, Leone G, Duncan R, Sharma RK, Lee PW (1991) Biochemical and biophysical characterization of the reovirus cell attachment protein al: evidence that it is a homotrimer. Virology 184: 2332

    Google Scholar 

  • Sturzenbecker LJ, Nibert M, Furlong D, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61: 2351–2361

    PubMed  CAS  Google Scholar 

  • Tang D, Strong JE, Lee PWK (1993) Recognition of the epidermal growth factor receptor by reovirus. Virology 197: 412–414

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71: 1739–1746

    PubMed  CAS  Google Scholar 

  • Tillotson L, Shatkin AJ (1992) Reovirus polypeptide a3 and N-terminal myristoylation of polypeptide pl are required for site-specific cleavage to µ1C in transfected cells. J Virol 66: 2180–2186

    PubMed  CAS  Google Scholar 

  • Tosteson MT, Nibert ML, Fields BN (1993) Ion channels induced in lipid bilayers by subvirion particles of the nonenveloped mammalian reoviruses. Proc Natl Acad Sci USA 90: 10549–10552

    PubMed  CAS  Google Scholar 

  • Turner DL, Duncan R, Lee PWK (1992) Site-directed mutagenesis of the C-terminal portion of reovirus protein al. Evidence for a conformation-dependent receptor-binding domain. Virology 186: 219–227

    Google Scholar 

  • Tyler KL, Squier MKT, Rodgers SE, Schneider BE, Oberhaus SM, Grdina TA, Cohen JJ, Dermody TS (1995) Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment proteinal. J Virol 69: 6972–6979

    PubMed  CAS  Google Scholar 

  • Tyler KL, Squier MKT, Brown AL, Pike B, Willis D, Oberhaus SM, Dermody TS, Cohen JJ (1996) Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the SI and M2 genes. J Virol 70: 7984–7991

    PubMed  CAS  Google Scholar 

  • Verdin EM, King GL, Maratos-Flier E (1989) Characterization of a common high affinity receptor for reovirus serotypes 1 and 3 on endothelial cells. J Virol 63: 1318–1325

    PubMed  CAS  Google Scholar 

  • Virgin HW IV, Mann MA, Fields BN, Tyler KL (1991) Monoclonal antibodies to reovirus reveal structure/function relationship between capsid proteins and genetics of susceptibility to antibody action. J Virol 65: 6772–6781

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Millward S, Graham A (1968) Regulation of transcription of the reovirus genome. J Mol Biol 36: 107–123

    PubMed  CAS  Google Scholar 

  • Weiner DB, Girard K, Williams WV, McPhillips T, Rubin DH (1988) Reovirus type I and type 3 differ in their binding to isolated intestinal epithelial cells. Microb Pathog 5: 29–40

    PubMed  CAS  Google Scholar 

  • Weiner HL, Drayna D, Averill DR Jr, Fields BN (1977) Molecular basis of reovirus virulence: role of the SI gene. Proc Natl Acad Sci USA 74: 5744–5748

    PubMed  CAS  Google Scholar 

  • Weiner HL, Ault KA, Fields BN (1980) Interaction of reovirus with cell surface receptors. I. Murine and human lymphocytes have a receptor for the hemagglutinin of reovirus type 3. J Immunol 124: 2143–2148

    PubMed  CAS  Google Scholar 

  • Wessner DR, Fields BN (1993) Isolation and genetic characterization of ethanol-resistant reovirus mutant. J Virol 67: 2442–2447

    PubMed  CAS  Google Scholar 

  • White CK, Zweerink HJ (1976) Studies on the structure of reovirus cores: selective removal of polypeptide 2.2. Virology 70: 171–180

    PubMed  CAS  Google Scholar 

  • Williams WV, Kieber-Emmons T, Weiner DB, Rubin DH, Greene MI (1991) Contact residues and predicted structure of the reovirus type 3 receptor interaction. J Biol Chem 266: 9241–9250

    PubMed  CAS  Google Scholar 

  • Xu P, Miller SE, Joklik WK (1993) Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments LI, L2, L3, and S2. Virology 197: 726–731

    PubMed  CAS  Google Scholar 

  • Yamakawa M, Furuichi Y, Nakashima K, LaFiandra AJ, Shatkin AJ (1981) Excess synthesis of viral mRNA 5’-terminal oligonucleotides by reovirus transcriptase. J Biol Chem 256: 6507–6514

    PubMed  CAS  Google Scholar 

  • Yamakawa M, Furuichi Y, Shatkin AJ (1982) Reovirus transcriptase and capping enzymes are active in intact virions. Virology 118: 157–168

    PubMed  CAS  Google Scholar 

  • Yeung MC, Gill MJ, Alibhai SS, Shahrabadi MS, Lee PWK (1987) Purification and characterization of the reovirus cell attachment protein al. Virology 156: 377–385

    PubMed  CAS  Google Scholar 

  • Yeung MC, Lim D, Duncan R, Shahrabadi MS, Cashdollar LW, Lee PWK (1989) The cell attachment proteins of type 1 and type 3 reovirus are differentially susceptible to trypsin and chymotrypsin. Virology 170: 62–70

    PubMed  CAS  Google Scholar 

  • Yin P, Cheang M, Coombs KM (1996) The M1 gene is associated with difference in the temperature optimum of the transcriptase activity in reovirus core particles. J Virol 70: 1223–1227

    PubMed  CAS  Google Scholar 

  • Yue Z, Shatkin AJ (1996) Regulated, stable expression and nuclear presence of reovirus double-stranded RNA-binding protein a3 in HeLa cells. J Virol 70: 3497–3501

    PubMed  CAS  Google Scholar 

  • Yue Z, Shatkin AJ (1997) Double-stranded RNA-dependent protein kinase ( PKR) is regulated by reo-virus structural proteins. Virology 234: 364–371

    PubMed  CAS  Google Scholar 

  • Zou S, Brown EG (1992) Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment. Virology 186: 377–388

    PubMed  CAS  Google Scholar 

  • Zweerink HJ, Joklik WK (1970) Studies on the intracellular synthesis of reovirus-specified proteins. Virology 41: 501–518

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

The early demonstration of reovirus gene reassortment by Bernie Fields provided fundamental insights into how reoviruses evolve, and this chapter is dedicated to his memory.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yue, Z., Shatkin, A.J. (1998). Enzymatic and Control Functions of Reovirus Structural Proteins. In: Tyler, K.L., Oldstone, M.B.A. (eds) Reoviruses I. Current Topics in Microbiology and Immunology, vol 233/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72092-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72092-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72094-9

  • Online ISBN: 978-3-642-72092-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics