Fabrication and Interconnection of Ceramic Microreaction Systems for High Temperature Applications

  • V. Hessel
  • W. Ehrfeld
  • H. Freimuth
  • V. Haverkamp
  • H. Löwe
  • Th. Richter
  • M. Stadel
  • A. Wolf
Conference paper

Abstract

Mass and heat transfer are significantly enhanced in microreactors because of the large surface-to-volume ratio [1–4]. These effects are expected to strongly influence different types of reactions, in particular high temperature gas phase reactions in the field of heterogeneous catalysis [5,6] and highly exothermic, fast two- or three-phase reactions. The extreme temperature conditions and the high reactivity of the process gases in case of heterogeneous catalysis or of the process liquids in case of gas/liquid reactions seriously limits the number of micromaterials to be applied to ceramics, stainless steel or special alloys. Ceramic components may be mainly applied as supports for catalysts as in large-scale reactors. Furthermore, their low thermal conductivity may be favourably used to prevent undesired heat transfer by creating insulating barriers between hot and cold miniaturized components in compact microreaction assemblies.

Keywords

Permeability Titanium Surfactant Methane Zirconium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrfeld, W.; Hessel, V.; Möbius, H.; Richter, Th.; Russow, K.: Potentials and realization of micro reactors.Microsystem Technology for Chemical and Biological Micro- reactors DECHEMA monograph Vol. 132, Verlag Chemie Weinheim 1–28 (1996)Google Scholar
  2. 2.
    Ehrfeld, W.; Hessel, V.; Löwe, H.; Richter, Th.: Anwendungspotentiale für chemische u und biologische Mikroreaktoren.Chemie Ingenieur Technik 68(9), 1091–1106 (1996)CrossRefGoogle Scholar
  3. 3.
    Kämper, K.-P.; Döpper, J.; Ehrfeld, W.; Hessel, V.; Lehr, H.; Löwe, H.; Richter, Th.; Wolf, A.: Microfluidic components for biological and chemical microreactors. Proceedings of the IEEE MEMS’97, Jan. 26th-30th, Nagoya, Japan (1997)Google Scholar
  4. 4.
    Hessel, V.; Ehrfeld, W.; Möbius, H.; Richter, Th.; Russow, K.: Potentials and realization of micro reactors. Proc. Int. Symp. on Microsystems, Intelligent Materials and Robots, Sep. 27th – 29th, Sendai, Japan,45–48 (1995)Google Scholar
  5. 5.
    Graham, S.; Harper, M.; Miller, B.; Shaw, J.; Turner, C.: Mass transfer of species in micro-contactors: CFD modelling and experimental validation. Proceedings of the 2nd international symposium on miniaturized total analysis systems, μTAS 96, Basel, Nov. 19th–22nd, edited by H.M. Widmer, E. Verpoorte and S. Barnard, 185–188 (1996)Google Scholar
  6. 6.
    Hönicke, D.; Wießmeier, G.: Heterogeneously catalyzed reactions in a microreactor. Microsystem Technology for Chemical and Biological Microreactors DECHEMA monograph Vol. 132, Verlag Chemie Weinheim, 93–107 (1996)Google Scholar
  7. 7.
    Knitter, R.; Günther, E.; Maciejewski, Odemer, C.: Herstellung keramischer Mikrostrukturen.CFI, Ceram. Forum Int. 71(9), 549–556 (1994)Google Scholar
  8. 8.
    Nöker, F.; Beyer, E.: Herstellung von MikroStrukturkörpern aus Keramik. Keram. Z. 44, 677–681 (1992)Google Scholar
  9. 9.
    Richter, Th.; Ehrfeld, W.; Wolf, A.; Gruber, H.-P.; Wörz, O.: Fabrication of micro reactor components by electro discharge machining. In this volume of proceedingsGoogle Scholar
  10. 10.
    Freimuth, H.; Hessel, V.; Lacher, M.; Stadel, M.: Abformung keramischer Mikro strukturen durch die LIGA-Technik.Keram. Zeitschrift 48(12), 1112–1117 (1996)Google Scholar
  11. 11.
    Ehrfeld, W.; Freimuth, H.; Lehr, H.; Pech, B.; Weber, L.:Micro molding - a powerful tool for the large scale production of precise microstructures.SPIE Symp. “Micromachining and Microfabrication”, Austin, USA, SPIE 2879, 156 (1996)Google Scholar
  12. 12.
    Michel, F.; Bertholds, A.; Ehrfeld, W.; Gruber, H.-P.; Lehr, H.; Wolf, A.: Mikro funkenerodieren als Strukturierungsverfa.hren in der Mikrotechnik.Tagungsband 41. Int. Wissenschaftl. Koll “Wandel im Maschinenbau durch Feinwerktechnik und Mikrosystemtechmk”, Sep. 23rd–26th, TU Ilmenau, 233–236 (1996)Google Scholar
  13. 13.
    Ehrfeld, W.; Hessel, V.; Möbius, H.; Richter, Th.: Sensor controlled processes in chemical micro reactors.Transducers ’95 - Eurosensors IX, Proc. of 8th Int. Conf. on Solid-State Sensors and Actuators/Euro-sensors IX, June 25th–29th, Stockholm, 775–778 (1995)Google Scholar
  14. 14.
    Mensinger, H.; Döpper, J.; Ehrfeld, W.; Hessel, V.; Richter, Th.: Microreactor with integrated static mixer and analysis system. Micro Total Analysis Systems, eds. A. van den Berg, P. Bergveld, Kluwer Academic Publishers, 237–243 (1995)Google Scholar
  15. 15.
    Branebjerg, J.; Gravesen, P.; Krog, J.P.; Nielsen, C.R.: Fast mixing by parallel multi layer lamination. Proceedings of the 2nd international symposium on miniaturized total analysis systems, μTAS 96, Basel, Nov. 96 edited by H.M. Widmer, E. Verpoorte and S. Barnard, 228 (1996)Google Scholar
  16. 16.
    Branebjerg, J.; Gravesen, P.; Krog, J.P.; Nielsen, C.R.: Fast mixing by lamination, Proceedings of IEEE MEMS’96, Feb. 12th–15th, San Diego, USA (1996)Google Scholar
  17. 17.
    Frank, T.; Schwesinger, N.; Wurmus, H.: A modular microfluid system with an integrated micromixer. J. Micromech. Microeng. 6, 99–102 (1996)CrossRefGoogle Scholar
  18. 18.
    Arnold, J.; Dasbach, U.; Ehrfeld, W.; Hesch, K.; Löwe, H.: Combination of excimer laser micromachining and replication processes suited for large scale production (Laser-LIGA). Applied Surface Science 86, 251 (1995)CrossRefGoogle Scholar
  19. 19.
    Wegeng, R.W.; Call, C.J.; Drost, M.K.: Chemical system miniaturization.Proceedings of 1996 Spring National Meeting AIChE, Feb. 25th–29th, New Orleans, 1–13 (1996)Google Scholar
  20. 20.
    Jäckel, K.-P.; Wörz, O.: Winzlinge mit großer Zukunft - Mikroreaktoren für die Chemie.Chemie-Technik 26(1), 130–134 (1997)Google Scholar
  21. 21.
    Wolf, A.; Ehrfeld, W.; Gruber, H.; Lehr, H.; Michel, F.; Richter, Th.; Wörz, O.: Mikroreaktorfertigung mittels Funkenerosion.F & M Feinwerktechnik, Mikrotechnik, Meßtechnik 6,436–439 (1997)Google Scholar
  22. 22.
    Schubert, K.; Bier, W.; Keller, W.; Linder, G.; Seidel, D.: Manufacturing and testing of compact micro heat exchangers with high volumetric heat transfer coefficients. ASME, DSC-Vol. 19, New York, USA (1990)Google Scholar
  23. 23.
    Bennett, W.; Cuta, J.; McDonald, C.: Fabrication and testing of microchannel heat exchangers. SPIE Micro-machining and microfabrication ’95, Conference Proceedings (1995)Google Scholar
  24. 24.
    Hessel, V.; Ehrfeld, E.; Golbig, K.; Löwe, H.; Richter, Th.: Characterization of mixing in micromixers by a test reaction: Single mixing units and mixer arrays. To be published in Ind. Chem. Res. (1998)Google Scholar
  25. 25.
    NGK Insulators Ltd. (NIGA): Bonding ceramic compacts using inorganic adhesive - comprising silica and alumina mullite and/or alumina-silica mixt, for excellent bonding strength. Japanese Patent JP 05132367Google Scholar
  26. b).
    Asahi Glass Co. Ltd.: Highly durable bonded ceramics body - with adhesive layer comprising oxide(s) of aluminium, silicon, yttrium and/or zirconium for high adhesive strength. Japanese Patent JP 58091086Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • V. Hessel
    • 1
  • W. Ehrfeld
    • 1
  • H. Freimuth
    • 1
  • V. Haverkamp
    • 1
  • H. Löwe
    • 1
  • Th. Richter
    • 1
  • M. Stadel
    • 1
  • A. Wolf
    • 1
  1. 1.Institut für Mikrotechnik Mainz GmbHMainz-HechtsheimGermany

Personalised recommendations