Skip to main content

The Roles of Molecular Chaperones in the Bacterial Cell

  • Conference paper
Molecular Microbiology

Part of the book series: NATO ASI Series ((ASIH,volume 103))

  • 536 Accesses

Abstract

In this chapter, I shall look at the major bacterial molecular chaperones, and summarise the evidence for what we know about their cellular role. Molecular chaperones have risen from obscurity to near superstar status in the last few years, as we have learned that many fundamental aspects of protein function in all cells require the help of other proteins in order to take place. These include the correct folding of proteins as they are translated, their delivery to and passage across membranes, and the repair of proteins which have become inactive because of exposure of the cells to stresses such as an increase in temperature. “Molecular chaperone” is the generic name given to a protein that assists in these processes. The review will be from the point of what is known about what these proteins do in the cell, although I will also describe what is currently understood about the mechanisms by which some of the chaperones work, and how their diverse functions can sometimes be understood in terms of a single mechanism. Finally, I will try to summarise some of the areas where I think key questions about the cellular role of molecular chaperones remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen SP, Polazzi JO, Gierse JK, Easton AM (1992) Two novel heat shock proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174, 6938–6947

    PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1988) Ancient heat-shock gene is dispensable. J Bacteriol 170, 2977–2983.

    PubMed  CAS  Google Scholar 

  • Braig K. Otkinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8-angstrom. Nature 371, 578–586.

    Article  PubMed  CAS  Google Scholar 

  • Buchberger A, Schroder H, Hesterkamp T, Schonfeld HJ, Bukau B (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol 261, 328–333

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Walker GC (1989) A-dnaK52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J Bacteriol 171, 6030–6038

    PubMed  CAS  Google Scholar 

  • Ellis RI (1994) Molecular chaperones–opening and closing the Anfinsen cage. Current Biol 4, 633–635

    Article  CAS  Google Scholar 

  • Ensgraber M, Loos M (1992) A 66kDa heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 60, 3072–3078

    PubMed  CAS  Google Scholar 

  • Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F, Hennecke H. (1993) One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is coregulated with symbiotic nitrogen fixation genes. EMBO Jou 12, 2901–2912

    CAS  Google Scholar 

  • Franetic O, Kumamoto C (1996) Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants. J Bacteriol 178, 5954–5959

    Google Scholar 

  • Gaitanaris GA, Vysokanov A, Hung SC, Gottesman ME, Gragerov A (1994) Successive action of Escherichia coli chaperones in vivo Mol Micro 14, 861–869

    Article  CAS  Google Scholar 

  • Georgellis D, Sohlberg B, Hartl FU. Von Gabain A (1995) Identification of GroEL as a constituent of an mRNA protection complex in Escherichia coli. Mol Micro 16, 1259–1268

    Article  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer G (1989) GroE heat shock proteins promote assembly of foreign ribulose bisphosphate oligomers in Escherichia coli. Nature 337, 44–17

    Article  PubMed  CAS  Google Scholar 

  • Gragerov A, Nudler E. Komissarova N, Gaitanaris GA, Nikiforov V (1992) Co-operation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 89, 10341–10344

    Article  PubMed  CAS  Google Scholar 

  • Guthrie B, Widmer W (1990) Trigger factor depletion or over-production causes defective cell division but does not block protein export. J Bacteriol 172, 5555–5562

    PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–580

    Article  PubMed  CAS  Google Scholar 

  • Hesterkamp T, Hauser S. Lutcke H. Bukau B (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci USA 93, 4437–4441

    Article  Google Scholar 

  • Honvich AL, Low KB. Fenton WA. Hirshfield IN. Furtak K (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917

    Article  Google Scholar 

  • Ivic A. Olden D, Wallington EJ, Lund PA (1997) The groEL deletion of Escherichia coli is complemented by a Rhizobium leguntinosarum groEL homologue at 37oC but not at 43oC. Gene, in press.

    Google Scholar 

  • Jakob U. Gaestel M. Engel K. Buchner J. (1994) Small heat shock proteins are molecular chaperones. J Biol Chem 268. 1517–1520

    Google Scholar 

  • Kandror O, Sherman M, Moerschell R Goldberg (1997) Trigger factor associates FFith GroEL in vivo and promotes its binding to certain poly-peptides. J Biol Chem 272, 1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Kanemori M, Mori H. Yura T. (1994) Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat-shock proteins during steady state growth. J bacteriol 176, 4235–4242.

    PubMed  CAS  Google Scholar 

  • Kumamoto CA and Beckwith J (1985) Evidence for specificity at an early step in protein export in Escherichia coli. J Bacteriol 163. 267–274

    PubMed  CAS  Google Scholar 

  • Kusukawa N, Yura T (1988) Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev 2, 874–882

    Article  PubMed  CAS  Google Scholar 

  • Kusukawa N, Yura T, Ueguchi C, Akiyama Y. Ito K (1989) Effects of mutations in the heat shock genes groES and groEL on protein export of Escherichia coli. EMBO Jou 8, 3517–3521

    CAS  Google Scholar 

  • Lecker S, Lill R Ziegelhoffer T, Georgopoulos C, Bassford PJ, Kumamoto CA, Wickner W (1989) Three pure chaperone proteins of Escherichia coli-secB, trigger factor, and GroEL–form soluble complexes with precursor proteins in vitro. EMBO Jou 8, 2703–2709

    CAS  Google Scholar 

  • Lorimer GH. (1996) A quantitative assessment of the role of chaperonin proteins in protein folding in vivo. FASEB Jou 10, 5–9

    CAS  Google Scholar 

  • Martin J, Horwich AL, Hartl F-U. (1992) Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 258. 995–998

    Article  PubMed  CAS  Google Scholar 

  • Phillips GJ, Silhavy TJ (1990) heat-shock proteins DnaK and GroEL facilitate protein export of LacZhybrid proteins in Escherichia coli. Nature 344, 882–884

    Article  PubMed  CAS  Google Scholar 

  • Randall LL, Hardy SJS (1995) High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem Sci 20, 65–69

    Article  PubMed  CAS  Google Scholar 

  • Schroder H, Langer T. Hartl F-U, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO Jou 12, 4137–4144

    CAS  Google Scholar 

  • Skowyra D, McKenny K, Wickner SH (1995) Function of molecular chaperones in bacteriophage and plasmid DNA replication. Seminars Virol 6, 43–51

    Article  CAS  Google Scholar 

  • Straus D. Walter W, Gross CA (1990) DnaK DnaJ and GrpE heat-shock proteins negatively regulate heat-shock gene expression by controlling the synthesis and stability of sigma-32. Genes Devel 4, 2202–2209

    Article  PubMed  CAS  Google Scholar 

  • Thomas JG, Baneyx F (1996) protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol Micro 21, 1185–1196

    Article  CAS  Google Scholar 

  • Ueguchi C, Kakeda M, Yamada H, Mizuno T (1994) An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc Nati Acad Sci USA 6, 1165–1172.

    Google Scholar 

  • Van Dyk TK, Gatenby AA, laRossa RA (1989) Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342, 451–453.

    Article  PubMed  Google Scholar 

  • Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Goergopoulos C, Zylicz M (1995) The C1pX heat shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the CIpP-CIpX complex, is a novel molecular chaperone EMBO Jou 14, 1867–1877

    CAS  Google Scholar 

  • Wickner S. Gottesman S, Skowyra D, Hoskins J. McKenny K, Maurizi MR (1994) A molecular chaperone. CIpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91, 12218–12222

    Article  PubMed  CAS  Google Scholar 

  • Wild J, Altman E. Yura T and Gross CA (1992) DnaK and DnaJ heat-shock proteins participate in protein export in Escherichia coli. Genes Devel 6, 1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Wild J. Rossmeissl P. Walter WA and Gross CA (1996) Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 178. 3608–3613

    PubMed  CAS  Google Scholar 

  • Zeiistra-Ryalls J, Fayet O. Georgopoulos C (1991) The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 45. 301–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lund, P.A. (1998). The Roles of Molecular Chaperones in the Bacterial Cell. In: Busby, S.J.W., Thomas, C.M., Brown, N.L. (eds) Molecular Microbiology. NATO ASI Series, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72071-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72071-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72073-4

  • Online ISBN: 978-3-642-72071-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics