Skip to main content

Herpesvirus Evasion of the Immune System

  • Chapter
Antigen Presentation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 232))

Abstract

It is now well established that animal viruses evade host immunity by many different mechanisms. In an immunocompetent host, the evolutionary pressure brought to bear on viruses is obviously immense, and thus their existence will ultimately dependent upon one form or another of immune subterfuge, subversion, suppression, or abrogation. However, there must also be a well-established balance between the ability of a virus to go around host immunity and the host’s ability to adapt to the virus and ultimately contain it. In the event that this balance is not established, either the host or the virus will be eliminated. It is also important to note that viruses have had a very long time to study the immune system, many millions of years longer than immunologists. Thus, much can be learned by examining the effects of viruses on the immune system and their evasion strategies, not only about the intricate interplay between viruses and the immune system, but also about the workings of the immune system itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Fruh K, Tampe R (1996a) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–55

    PubMed  CAS  Google Scholar 

  • Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Fruh K (1996b) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 93:10990–10995

    PubMed  CAS  Google Scholar 

  • Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJHJ, Ploegh HL, Peterson PA, Yang Y, Fruh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP Immunity 6:613–621

    PubMed  CAS  Google Scholar 

  • Anderson U, Britton S, de Ley M, Bird G (1983) Evidence for the ontogenetic precedence of suppressive T cell functions in the human neonate. Eur J Immunol 13:613–619

    Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Desinger PL, Farrell PJ, Gibson TJ, Halfull G, Hudson G, Satchwell C, Sequin C, Fuffnell P, Barrell B (1984) DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature (London) 310:207–211

    CAS  Google Scholar 

  • Beck S, Barrell BG (1988) Human cytomegalovirus encodes a protein homologous to MHC class I antigens. Nature 331:269–272

    PubMed  CAS  Google Scholar 

  • Beersma MFC, Bijlmakers MJE, Ploegh H (1993) Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I heavy chains. J Immunol 151:4455–4464

    PubMed  CAS  Google Scholar 

  • Beinart D, Neumann L, Vebel S, Tampe R (1997) Structure of the viral TAP-inhibitor ICP47 induced by membrane association. Biochemistry 36:4694–4700

    Google Scholar 

  • Bejarano MT, Masucci MG, Morgan A, Morein B, Klein G, Klein E (1990) Epstein-Barr virus (EBV) antigens processed and presented by B cells, B blasts, and macrophages trigger T-cell-mediated inhibition of EBV-induced B-cell transformation. J Virol 64:1398–1401

    PubMed  CAS  Google Scholar 

  • Berencsi K, Endresz V, Gyulai Z, Pincus S, Cox WI, Plotkin SA, Gonczol E (1997) Cytotoxic T lymphocyte responses to human cytomegalovirus (HCMV). Sixth International Cytomegalovirus Workshop, 5–9 March, Perdido Beach, Alabama (abstr 151)

    Google Scholar 

  • Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    PubMed  CAS  Google Scholar 

  • Bonneau RH, Jennings SR (1989) Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytotoxic activity. J Virol 63:1480–1484

    PubMed  CAS  Google Scholar 

  • Britt WJ, Alford CA (1996) Cytomegalovirus. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Raven-Lippincott, Philadelphia, pp 2493–2523

    Google Scholar 

  • Browne H, Smith G, Beck S, Minson T (1990) A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature 347:770–772

    PubMed  CAS  Google Scholar 

  • Burchett SK, Corey L, Mohan KM, Westall J, Ashley R, Wilson CB (1992) Diminished interferon-g and lymphocyte proliferation in neonatal and postpartum primary herpes simplex virus infection. J Infect Dis 165:813–818

    PubMed  CAS  Google Scholar 

  • Campbell AE, Slater JS (1994) Down-regulation of major histocompatibility complex class I synthesis by murine cytomegalovirus early gene expression. J Virol 68:1805–1811

    PubMed  CAS  Google Scholar 

  • Campbell AE, Slater JS, Cavanaugh VJ, Stenberg RM (1992) An early event in murine cytomegalovirus replication inhibits presentation of cellular antigens to cytotoxic T lymphocytes. J Virol 66:3011–3017

    PubMed  CAS  Google Scholar 

  • Carter VC, Jennings SR, Rice PL, Tevethia SS (1984) Mapping of a herpes simplex virus type 2-encoded function that affects the susceptibility of herpes simplex virus-infected target cells to lysis by herpes simplex virus-specific cytotoxic T lymphocytes. J Virol 49:766–771

    PubMed  CAS  Google Scholar 

  • Cines DB, Lyss AP, Bina M (1982) Fc and C3 receptors induced by herpes simplex virus on cultured human endothelial cells. J Clin Invest 69:123–128

    PubMed  CAS  Google Scholar 

  • Confer DL, Vercellotti GM, Kotasek D, Goodman JL, Ochoa A, Jacob HS (1990) Herpes simplex virus-infected cells disarm killer lymphocytes. Proc Natl Acad Sci USA 87:3609–3613

    PubMed  CAS  Google Scholar 

  • Corey L, Spear PG (1986) Infections with herpes simplex viruses (2). N Engl J Med 314:749–757

    PubMed  CAS  Google Scholar 

  • Costa JC, Rabson AS (1975) Role of Fc receptors in herpes simplex virus infection. Lancet 1:77–78

    PubMed  CAS  Google Scholar 

  • Cunningham AL, Merigan TC (1983) Gamma interferon production appears to predict time of recurrence of herpes labialis. J Immunol 130:2397–2400

    PubMed  CAS  Google Scholar 

  • de Campos-Lima PO, Gavioli R, Zhang QJ, Wallace LE, Dolcetti R, Rowe M, Rickinson AB, Masucci MG (1993) HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science 260:98–100

    PubMed  Google Scholar 

  • de Campos-Lima PO, Levitsky V, Brooks J, Lee SP, Hu LF, Rickinson AB, Masucci MG (1994) T cell responses and virus evolution: loss of HLA Al1-restricted CTL epitopes in Epstein-Barr virus isolates from highly All-positive populations by selective mutation of anchor residues. J Exp Med 179:1297–1305

    PubMed  Google Scholar 

  • Del Val M, Munch K, Reddehase MJ, Koszinowski UH (1989) Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 58:305–315

    PubMed  Google Scholar 

  • Del Val M, Schlicht HJ, Volkmer H, Messerle M, Reddehase MJ, Koszinowski UH (1991) Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J Virol 65:3641–3646

    PubMed  Google Scholar 

  • Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738

    PubMed  Google Scholar 

  • Domke-Optiz I, Swatzkym R (1990) Natural resistance to herpes simplex virus infections: the macrophage-interferon axis. In: Boston AL (ed) Herpes viruses, the immune system, and AIDS. Kluwer, Dordrecht, pp 171–202

    Google Scholar 

  • Douglas RG, Couch RB (1970) A prospective study of chronic herpes virus infection and recurrent herpes labialis in humans. J Immunol 104:289–295

    PubMed  CAS  Google Scholar 

  • Dubin G, Socolof E, Frank I, Friedman HM (1991) Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 65:7046–7050

    PubMed  CAS  Google Scholar 

  • Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC, Cohen GH (1987) Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog 3:423–435

    PubMed  CAS  Google Scholar 

  • Fahnestock MJ, Johnson JI, Feldman RM, Neveu JM, Lane WS, Bjorkman PJ (1995) The MHC class I homologue encoded by human cytomegalovirus binds endogenous peptides. Immunity 3:583–590

    PubMed  CAS  Google Scholar 

  • Fenwick ML, Everett RD (1990) Transfer of UL41, the gene controlling virion-associated host shutoff, between strains of herpes simplex virus. J Gen Virol 71:411–418

    PubMed  CAS  Google Scholar 

  • Fitzgerald-Bocarsly P, Feldman M, Curl S, Schnell J, Denny T (1989) Positively selected Leu-11a (CD 16+) cells require the presence of accessory cells or factors for the lysis of herpes simplex virus-infected fibroblasts but not herpes simplex virus-infected Raji. J Immunol 143:1318–1326

    PubMed  CAS  Google Scholar 

  • Fitzgerald-Bocarsly P, Howell DM, Pettera L, Tehrani S, Lopez C (1991) Immediate-early gene expression is sufficient for induction of natural killer cell-mediated lysis of herpes simplex virus type 1-infected fibroblasts. J Virol 65:3151–3160

    PubMed  CAS  Google Scholar 

  • Frank I, Friedman HM (1989) A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol 63:4479–4488

    PubMed  CAS  Google Scholar 

  • Fruh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, Peterson PA, Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–418

    PubMed  CAS  Google Scholar 

  • Galocha B, Hill AB, Cook R, Barnett B, Nolan A, Raimondi A, McGeoch D, Ploegh HL (1997) Identification of the active site of ICP47, an herpes simplex virus encoded inhibitor of TAP. J Exp Med 185:1565–1572

    PubMed  CAS  Google Scholar 

  • Gavioli R, Kurilla MG, de Campos-Lima PO, Wallace LE, Dolcetti R, Murray RJ, Rickinson AB, Masucci MG (1993) Multiple HLA All-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 67:1572–1578

    PubMed  CAS  Google Scholar 

  • Gilbert MJ, Riddell SR, Li CR, Greenberg PD (1993) Selective interference with class I major histocompatibility complex presentation of the major immediate-early protein following infection with human cytomegalovirus. J Virol 67:3461–3469

    PubMed  CAS  Google Scholar 

  • Gilbert MJ, Riddell SR, Plachter B, Greenberg PD (1996) Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383:720–722

    PubMed  CAS  Google Scholar 

  • Goldsmith K, Chen W, Johnson DC, Henducks RL (1998) ICP47 enhances herpes simplex virus neurovirulence by the blocking CD8+ T cell response. J Exp Med (in press)

    Google Scholar 

  • Gregory CP, Murray R, Edwards CF and ABR (1988) Down regulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumor cell escape from virus-specific T cell surveillance. J Exp Med 167:1811–1824

    PubMed  CAS  Google Scholar 

  • Hengel H, Koopman JO, Flohr T, Murangi W, Goulmy E, Hammerling GJ, Koszinowski UH, Momburg F (1997) A viral ER resident glycoprotein inactivates the MHC encoded peptide transporter. Immunity 6:623–632

    PubMed  CAS  Google Scholar 

  • Henle W, Henle G (1980) Epidemiologic aspects of (EBV) -associated diseases. Ann NY Acad Sci 354:326–331

    PubMed  CAS  Google Scholar 

  • Hidaka Y, Sakai Y, Toh Y et al (1991) Glycoprotein C of herpes simplex virus type 1 is essential for the virus to evade antibody-independent complement-mediated virus inactivation and lysis of virus-infected cells. J Gen Virol 72:915–921

    PubMed  CAS  Google Scholar 

  • Hill AB, Barnett BC, McMichael AJ, McGeoch DJ (1994) HLA class I molecules are not transported to the cell surface in cells infected with herpes simplex virus types 1 and 2. J Immunol 152:2736–41

    PubMed  CAS  Google Scholar 

  • Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415

    PubMed  CAS  Google Scholar 

  • Hu LF, Minarovits J, Cao SL, Contreras-Salazar B, Rymo L, Falk K, Klein G, Emberg I (1991) Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5′-flanking region. J Virol 65:1558–1567

    PubMed  CAS  Google Scholar 

  • Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T (1996) Natural killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 103:408–413

    PubMed  CAS  Google Scholar 

  • Johnson DC, Feenstra V (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216

    PubMed  CAS  Google Scholar 

  • Johnson DC, Frame MC, Ligas MW, Cross AM, Stow ND (1988) Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gl. J Virol 62:1347–1354

    PubMed  CAS  Google Scholar 

  • Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE (1995) Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69:4830–4841

    PubMed  CAS  Google Scholar 

  • Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA 93:11327–11333

    PubMed  CAS  Google Scholar 

  • Jonjic S, del Val M, Keil GM, Reddehase MJ, Koszinowski UH (1988) A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. J Virol 62:1653–1658

    PubMed  CAS  Google Scholar 

  • Kaufman DS, Schoon RA, Leibson PJ (1992) Role for major histocompatibility complex class I in regulating natural killer cell-mediated killing of virus-infected cells. Proc Natl Acad Sci USA 89:8337–8341

    PubMed  CAS  Google Scholar 

  • Kerry JA, CD, and V, Stanley TL, Jones TR, Stenberg RM (1997) Role of cellular transcription factors in human cytomegalovirus replication. Sixth International Cytomegalovirus Workshop, 5–9 March 1997, Perdido Beach, Alabama (abstr 2)

    Google Scholar 

  • Khanna R, Burrows SR, Suhrbier A, Jacob CA, Griffin H, Misko IS, Sculley TB, Rowe M, Rickinson AB, Moss DJ (1993) EBV peptide epitope sensitization restores human cytotoxic T cell recognition of Burkitt’s lymphoma cells. Evidence for a critical role for ICAM-2. J Immunol 150:5154–5162

    PubMed  CAS  Google Scholar 

  • Khanna R, Burrows SR, Argaet V, Moss DJ (1994) Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int Immunol 6:639–645

    PubMed  CAS  Google Scholar 

  • Khanna R, Burrows SR Moss DJ (1995) Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev 59:387–405

    PubMed  CAS  Google Scholar 

  • Kieff E. (1996) Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Howlet PM et al. (eds) Fields virology. Raven-Lippincott, Philadelphia, pp 2343–2396

    Google Scholar 

  • Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694

    PubMed  CAS  Google Scholar 

  • Knecht H, Bachmann E, Brousset P, Sandvej K, Nadal D, Bachmann F, Odermatt BF, Delsol G, Pallesen G (1993) Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin’s disease and identical to those observed in nasopharyngeal carcinoma. Blood 82:2937–2942

    PubMed  CAS  Google Scholar 

  • Koelle DM, Tigges MA, Burke RL, Symington FW, Riddell SR, Abbo H, Corey L (1993) Herpes simplex virus infection of human fibroblasts and keratinocytes inhibits recognition by cloned CD8+ cytotoxic T lymphocytes. J Clin Invest 91:961–968

    PubMed  CAS  Google Scholar 

  • Kohl S (1992) The role of antibody in herpes simplex virus infection in humans. Curr Top Microbiol Immunol 179:75–88

    PubMed  CAS  Google Scholar 

  • Kolaitis G, Doymaz M, Rouse BT (1990) Demonstration of MHC class II-restricted cytotoxic T lymphocytes in mice against herpes simplex virus. Immunology 71:101–106

    PubMed  CAS  Google Scholar 

  • Koszinowski UH (1991) Molecular aspects of immune recognition of cytomegalovirus. Transplant Proc 23:70–73

    PubMed  CAS  Google Scholar 

  • Koszinowski UH, Reddehase MJ, Keil GM, Schickedanz J (1987) Host immune response to cytomegalovirus: products of transfected viral immediate-early genes are recognized by cloned cytolytic T lymphocytes. J Virol 61:2054–2058

    PubMed  CAS  Google Scholar 

  • Koszinowski UH, Koopman JO, Flohr T, Muranyi W, Goulmy E, Hämmerling GJ, Momburg F, Hengel H (1997) Inactivation of the MHC encoded peptide transporters by a cytomegaloviral ER resident glycoprotein. Sixth International Cytomegalovirus Workshop, 5–9 March 1997, Perdido Beach, Alabama, p 9

    Google Scholar 

  • Kubota Y, Gaither TA, Cason J, O’Shea JJ Lawley TJ (1987) Characterization of the C3 receptor induced by herpes simplex virus type 1 infection of human epidermal, and A431 cells. J Immunol 138:1137–1142

    PubMed  CAS  Google Scholar 

  • Lee SP, Morgan S, Skinner J, Thomas WA, Jones SR, Sutton J, Khanna R, Whittle HC, Rickinson AB (1995) Epstein-Barr virus isolates with the major cytotoxic T cell epitope are prevalent in a highly B35.01-positive African population. Eur J Immunol 25:102–110

    PubMed  CAS  Google Scholar 

  • Lehner T, Wilton JM, Shillitoe EJ (1975) Immunological basis for latency, recurrences and putative oncogenicity of herpes simplex virus. Lancet 2:60–62

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Coram M, Levitsky VS, I, Steigerwald-Mullen PM, G, K, MG, K, MG, M (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    PubMed  CAS  Google Scholar 

  • Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR (1994) Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 83:1971–1979

    PubMed  CAS  Google Scholar 

  • Luka J, Kallin B, Klein G (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–231

    PubMed  CAS  Google Scholar 

  • Machold RP, Wiertz EJHJ, Jones TR, Ploegh HL (1997) The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J Exp Med 185:363–366

    PubMed  CAS  Google Scholar 

  • Manickan E, Rouse BT (1995) Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse-models. J Virol 69:8178–8179

    PubMed  CAS  Google Scholar 

  • Marchini A, Cohen JI, Wang F, Kieff E (1992a) A selectable marker allows investigation of a nontransforming Epstein-Barr virus mutant. J Virol 66:3214–3219

    PubMed  CAS  Google Scholar 

  • Marchini A, Longnecker R, Kieff E (1992b) Epstein-Barr virus (EBV)-negative B-lymphoma cell lines for clonal isolation and replication of EBV recombinants. J Virol 66:4972–4981

    PubMed  CAS  Google Scholar 

  • Martin S, Moss B, Berman PW, Laskey LA, Rouse BT (1987) Mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: cytotoxic T cells. J Virol 61:726–734

    PubMed  CAS  Google Scholar 

  • McGeoch DJ (1992) Molecular evolution of the large DNA viruses of eukaryotes. Semin Virol 3:399–409

    Google Scholar 

  • McGeoch DJ, Dolan A, Donald S, Rixon FJ (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type I. J Mol Biol 181:1–13

    PubMed  CAS  Google Scholar 

  • McNeamey TA, Odell C, Holers VM, Spear PG, Atkinson JP (1987) Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. J Exp Med 166:1525–1535

    Google Scholar 

  • Middleton T, Sugden B (1994) Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol 68:4067–4071

    PubMed  CAS  Google Scholar 

  • Mikloska Z, Kesson AM, Penfold ME, Cunningham AL (1996) Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J Infect Dis 173:7–17

    PubMed  CAS  Google Scholar 

  • Mocarski ES Jr (1996) Cytomegaloviruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Raven-Lippencott, Philadelphia, pp 2447–2492

    Google Scholar 

  • Moss DJ, Rickinson AB, Pope JH (1978) Long-term T cell-mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. Int J Cancer 22:662–668

    PubMed  CAS  Google Scholar 

  • Moss DJ, Burrows SR, Suhrbier A, Khanna R (1994) Potential antigenic targets on Epstein-Barr virus-associated tumours and the host response. Ciba Found Symp 187:4–13

    PubMed  CAS  Google Scholar 

  • Moss DJ, Schmidt D, Elliott S, Suhrbier A, Burrows S, Khanna R (1996) Strategies involved in developing an effective vaccine for EBV-associated diseases. Cancer Res 69:211–243

    Google Scholar 

  • Nash AA, Jayasuriya A, Phelan J, Cobbold SP, Waldmann H, Prospero T (1987) Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol 68:825–833

    PubMed  Google Scholar 

  • Orange JS, Biron CA (1996) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156:4746–4756

    PubMed  CAS  Google Scholar 

  • Orange JS, Wang B, Terhorst C, Biron CA (1995) Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182:1045–1056

    PubMed  CAS  Google Scholar 

  • Parham P (ed) NK cells, MHC class I antigens and missing self. Immunol Rev 155

    Google Scholar 

  • Pearson GR, Qualtiere LF, Klein G, Norin T, Bal IS (1979) Epstein-Barr virus-specific antibody-dependent cellular cytotoxicity in patients with Burkitt’s lymphoma. Int J Cancer 24:402–406

    PubMed  CAS  Google Scholar 

  • Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, Elvin JG, Rothbard A, Bangham CR, Rizza CR et al (1991) Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition Nature 354:453–459

    PubMed  CAS  Google Scholar 

  • Pircher D, Moskopidis D, Rohrer U, Burki K, Hengartner H, Zinkemagel RM (1990) Viral excape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature (Lond) 346:629

    CAS  Google Scholar 

  • Posavad CM, Rosenthal KL (1992) Herpes simplex virus-infected human fibroblasts are resistant to and inhibit cytotoxic T-lymphocyte activity. J Virol 66:6264–6272

    PubMed  CAS  Google Scholar 

  • Posavad CM, Newton JJ, Rosenthal KL (1994) Infection and inhibition of human cytotoxic T lymphocytes by herpes simplex virus. J Virol 68:4072–4074

    PubMed  CAS  Google Scholar 

  • Posavad CM, Koelle DM, Corey L (1996) High frequency of CD8+ cytotoxic T-lymphocyte precursors specific for herpes simplex viruses in persons with genital herpes. J Virol 70:8165–8168

    PubMed  CAS  Google Scholar 

  • Quinnan GV, Masur H, Rook AH, Armstrong G, Frederick WR, Epstein J, Manischeqitz MS, Mecher AM, Jackson L, Ames J, Smith HA, Parker M, Pearson GR, Panillo J, Mitchell C, SE, S (1984) Herpesvirus infections in the acquired immune deficiency syndrome. JAMA 252:72–77

    PubMed  Google Scholar 

  • Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849

    PubMed  CAS  Google Scholar 

  • Reddehase MJ, Fibi MR, Keil GM, Koszinowski UH (1986) Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes. J Virol 60:1125–1129

    PubMed  CAS  Google Scholar 

  • Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    PubMed  CAS  Google Scholar 

  • Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065

    PubMed  CAS  Google Scholar 

  • Reusser P, Riddell SR, Meyers JD, Greenberg PD (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78:1373–1380

    PubMed  CAS  Google Scholar 

  • Reybum H, O, M, Valez-Gomez M, Sheu EG, Pazmany L, Davis DM, Strominger JL (1997) Human NK cells: their ligands, receptors and functions. Immunol Rev 155:119–125

    Google Scholar 

  • Rickinson AB, Kieff E (1996) Epstein-Barr virus. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Raven-Lippincott, Philadelphia, pp 2397–2446

    Google Scholar 

  • Riddell SR, Rabin M, Geballe AP, Britt WJ, Greenberg PD (1991) Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 146:2795–2804

    PubMed  CAS  Google Scholar 

  • Roizman B, Sears AE (1996) Herpes simplex viruses and the replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Raven-Lippincott, Philadelphia, pp 2231–2295

    Google Scholar 

  • Rowe M, Khanna R, Jacob CA, Argaet V, Kelly A, Powis S, Belich M, Croom-Carter D, Lee S, Burrows SR et al (1995) Restoration of endogenous antigen processing in Burkitt’s lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25:1374–1384

    PubMed  CAS  Google Scholar 

  • Sample J, Brooks L, Sample C, Young L, Rowe M, Gregory C, Rickinson A, Kieff E (1991) Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site. Proc Natl Acad Sci USA 88:6343–6347

    PubMed  CAS  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589

    PubMed  CAS  Google Scholar 

  • Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Yokoyama WM, Shellam GR (1995) Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-Pl. Genomics 27:435–441

    PubMed  CAS  Google Scholar 

  • Schmid DS (1988) The human MHC-restricted cellular response to herpes simplex virus type 1 is mediated by CD4+, CD8- T cells and is restricted to the DR region of the MHC complex. J Immunol 140:3610–3616

    PubMed  CAS  Google Scholar 

  • Schmid DS, Rouse BT (1992) The role of T cell immunity in control of herpes simplex virus. Curr Top Microbiol Immunol 179:57–74

    PubMed  CAS  Google Scholar 

  • Seidel-Dugan C, Ponce de Leon M, Friedman HM, Eisenberg RJ, Cohen GH (1897) Identification of C3b-binding regions on herpes simplex virus type 2 glycoprotein C. J Virol 64:1897–1906

    Google Scholar 

  • Simmons A, Tscharke DC (1992) Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175:1337–1344

    PubMed  CAS  Google Scholar 

  • Smiley ML, Friedman HM (1985) Binding of complement C3b to glycoprotein C is modulated by sialic acid on herpes simplex virus type I-infected cells. J Virol 55:857–851

    PubMed  CAS  Google Scholar 

  • Strang G, Rickinson AB (1987) Multiple HLA class I-dependent cytotoxicities constitute the non-HLA-restricted response in infectious mononucleosis. Eur J Immunol 17:1007–1013

    PubMed  CAS  Google Scholar 

  • Tal-Singer R, Seidel-Dugan C, Fries L, Huemer HP, Eisenberg RJ, Cohen GH, Friedman HM (1991) Herpes simplex virus glycoprotein C is a receptor for complement component iC3b. J Infect Dis 164:750–753

    PubMed  CAS  Google Scholar 

  • Tay CH, Welsh RM, Brutkiewicz RR (1995) NK cell response to viral infections in beta 2-microglobulin-deficient mice. J Immunol 154:780–789

    PubMed  CAS  Google Scholar 

  • Thale R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH (1995) Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol 69:6098–6105

    PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA (1980) The suppression of Epstein-Barr virus in vitro occurs after infection but before transformation of the cell. J Immunol 124:745–751

    PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Chess L, Strominger JL (1977) Suppression on in vitro Epstein-Barr virus infection. A new role for adult human lymphocytes. J Exp Med 146:495–508

    PubMed  CAS  Google Scholar 

  • Tigges MA, Koelle D, Hartog K, Sekulovich RE, Corey L, Burke RL (1992) Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens. J Virol 66:1622–1634

    PubMed  CAS  Google Scholar 

  • Tigges MA, Leng S, Johnson DC, Burke RL (1996) Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J Immunol 156:3901–3910

    PubMed  CAS  Google Scholar 

  • Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–3266

    PubMed  CAS  Google Scholar 

  • Tomkinson BE, Maziarz R Sullivan JL (1989) Characterization of the T cell-mediated cellular cytotoxicity during acute infectious mononucleosis. J Immunol 143:660–670

    PubMed  CAS  Google Scholar 

  • Torpey DJ, Lindsley MD, Rinaldo C (1989) HLA-restricted lysis of herpes simplex virus-infected monocytes and macrophages mediated by CD4+ and CD8+ T lymphocytes. J Immunol 142:1325–1332

    PubMed  Google Scholar 

  • Torsteindottir S, Masucci MG, Ehlin-Hendricksson G, Brautbar G, Basset GB, Klein G, Klein E (1986) Differentiation-dependent sensitivity of human B-cell-derived lines to major histocompatibility complex-restricted T-cell cytotoxicity. Proc Natl Acad Sci USA 83:5620–5624

    Google Scholar 

  • Warren AP, Ducroq DH, Lehner PJ, Borysiewicz LK (1994) Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 68:2822–2829

    PubMed  CAS  Google Scholar 

  • Whitley RJ (1996) Herpes simplex viruses. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Raven-Lippincott, Philadelphia, pp 2297–2342

    Google Scholar 

  • Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    PubMed  CAS  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Osaki T, Yoneda K, Ueta E (1993) Immunological investigation of adult patients with primary herpes simplex virus-1 infection. J Oral Pathol Med 22:263–267

    PubMed  CAS  Google Scholar 

  • Yamashita Y, Shimokata S, Saga S, Mizuno S, Tsurumi T, Nishiyama Y (1994) Rapid degradation of the heavy chain of class I major histocompatibility complex antigens in the endoplasmic reticulum of human cytomegalovirus-infected cells. J Virol 68:7933–7943

    PubMed  CAS  Google Scholar 

  • Yasukawa M, Zarling JM (1984a) Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens. J Immunol 133:422427

    Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81:3806–3810

    PubMed  CAS  Google Scholar 

  • Yokomaya WM (1995) Natural killer cell receptors specific for major histocompatibility complex class I molecules. Proc Natl Acad Sci USA 92:3081–3085

    Google Scholar 

  • York IA, Johnson DC (1993) Direct contact with herpes simplex virus-infected cells results in inhibition of lymphokine-activated killer cells because of cell-to-cell spread of virus. J Infect Dis 168:1127–1132

    PubMed  CAS  Google Scholar 

  • York IA, Johnson DC (1994) Inhibition of humoral and cellular immune recognition by herpes simplex viruses. In: McFadden G(ed) Viroceptors, virokines and related immune modulators encoded by DNA viruses. Landes, Austin, pp 89–110

    Google Scholar 

  • York LA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–535

    PubMed  CAS  Google Scholar 

  • Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinison W, Koszinowski UH (1997) A mouse cytomegalovirus protein retains MHC class I complexes in the ERCIC/cis-Golgi compartments. Immunity 6:57–66

    PubMed  CAS  Google Scholar 

  • Zweerink HJ, Stanton LW (1981) Immune response to herpes simplex virus infections: virus-specific antibodies in sera from patients with recurrent facial infections. Infect Immun 31:624–630

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, D.C., Hill, A.B. (1998). Herpesvirus Evasion of the Immune System. In: Whitton, J.L. (eds) Antigen Presentation. Current Topics in Microbiology and Immunology, vol 232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72045-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72045-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72047-5

  • Online ISBN: 978-3-642-72045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics