How Do Endogenous Proteins Become Peptides and Reach the Endoplasmic Reticulum

  • Dipankar Nandi
  • Kate Marusina
  • John J. Monaco
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 232)


T lymphocytes, via specific T cell receptors (TCR), recognize antigenic peptides bound to major histocompatibility complex (MHC)-encoded molecules. The recent crystallization of TCR-MHC complexes has enriched our understanding of this recognition process (Garciaet al. 1996a; Garbocziet al. 1996). Broadly speaking, there are two types of MHC molecules, i.e., classical and nonclassical molecules, and the majority of TCR recognize classical MHC molecules. Classical MHC molecules can be further divided into two types, i.e., class I and class II. CD8+ T cells, or cytotoxic T lymphocytes (CTL), recognize MHC class I molecules bound to peptides derived from endogenous proteins (i.e., proteins that are synthesized within the cell or artificially introduced directly into the cytoplasm or nucleus) that are primarily degraded in the cytoplasm. The CD8 accessory molecule present on most CTL appears to augment the formation of TCR-MHC/peptide complexes (Garcia et al. 1996b; Gao et al. 1997). In addition to presenting peptides to T cells, expression of MHC class I molecules protects cells from lysis by natural killer (NK) cells (Lanier 1997). On the other hand, CD4+ T lymphocytes or helper T lymphocytes recognize MHC class II molecules that bind peptides derived from exogenous or membrane proteins which enter the cell via endocytosis or phagocytosis and are primarily degraded by lysosomal proteases.


Major Histocompatibility Complex Class Antigen Processing Major Histocompatibility Complex Molecule Proteasome Subunit Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn JY, Tanahashi N, Akiyama K, Hisamatsu H, Noda C, Tanaka K, Chung AH, Shimbara N, Willy PJ, Mott JD, Slaughter CA, DeMartino GN (1995) Primary structures of two homologous subunits of PA28, a γ-interferon-inducible protein activator of the 20S proteasome. FEBS Lett 366:37–42PubMedGoogle Scholar
  2. Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Früh K, Tampe R (1996a) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus protein ICP47. EMBO J 15:3247–3255PubMedGoogle Scholar
  3. Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Früh K (1996b) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 93:10990–10995PubMedGoogle Scholar
  4. Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Früh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621PubMedGoogle Scholar
  5. Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-γ induces different subunit organizations and functional diversity of proteasomes. J Biochem 115:257–269PubMedGoogle Scholar
  6. Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem 272:1791–1798PubMedGoogle Scholar
  7. Aldrich CJ, DeCloux A, Woods AS, Cotter RJ, Soloski MJ, Forman J (1994a) Identification of a TAP-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell 79:649–658PubMedGoogle Scholar
  8. Aldrich CJ, Ljunggren H-G, van Kaer L, Ashton-Rickardt PG, Tonegawa S, Forman J (1994b) Positive selection of self- and alloreactive CD8+T cells in Tap-1 mutant mice. Proc Natl Acad Sci USA 91:6525–6528PubMedGoogle Scholar
  9. Anderson K, Cresswell P, Gammon M, Hermes J, Williamson A, Zweerink H (1991) Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell mediated lysis. J Exp Med 174:489–492PubMedGoogle Scholar
  10. Androlewicz MJ, Anderson KS, Cresswell P (1993) Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci USA 90:9130–9134PubMedGoogle Scholar
  11. Androlewicz MJ, Ortmann B, van Endert PM, Spies T, Cresswell P (1994a) Characteristics of peptide and major histocompatibility complex class I/ß2-microglobulin binding to the transporters associated with antigen processing (TAPI and TAP2). Proc Natl Acad Sci USA 91:12716–12720PubMedGoogle Scholar
  12. Androlewicz MJ, Cresswell P (1994b) Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1:7–14PubMedGoogle Scholar
  13. Antόn LC, Yewdell JW, Bennink JR (1997) MHC class I-associated peptides produced from endogenous gene products with vastly different efficiencies. J Immunol 158:2535–2542Google Scholar
  14. Armandola E, Momburg F, Nijenhuis M, Bulbic N, Hämmerling G (1996) A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Eur J Immunol 26:1748–1755PubMedGoogle Scholar
  15. Arnold D, Driscoll J, Androlewicz M, Hughes E, Cresswell P, Spies T (1992) Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 360:171–174PubMedGoogle Scholar
  16. Attaya M, Jameson S, Martinez CK, Hermel E, Aldrich C, Forman J, Lindahl KF, Bevan MJ, Monaco JJ (1992) Ham-2 corrects the class I antigen-processing defect in RMA-S cells. Nature 355:647–649PubMedGoogle Scholar
  17. Bacik I, Cox JH, Anderson R, Yewdell JW, Bennink JR (1994) TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. J Immunol 152:381–387PubMedGoogle Scholar
  18. Beck S, Kelly A, Radley E, Khurshid F, Alderton RP, Trowsdale J (1992) DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J Mol Biol 228:433–441PubMedGoogle Scholar
  19. Beersma MFC, Bijlmakers MJE, Ploegh H (1993) Human cytomegalovirus down-regulate HLA expression by reducing the stability of class IH chains. J Immunol 151:4455–4464PubMedGoogle Scholar
  20. Bennink JR, Yewdell JW, Gerhard W (1982) A viral polymerase involved in recognition of influenza virus-infected cells by a cytotoxic T cell clone. Nature 296:75–76PubMedGoogle Scholar
  21. Bergmann CC, Yao Q, Ho C-K, Buckwold SL (1996) Flanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. J Immunol 157:3242–3249PubMedGoogle Scholar
  22. Bevan M (1995) Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp Med 182:639–641PubMedGoogle Scholar
  23. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15:749–795PubMedGoogle Scholar
  24. Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel P-M (1994) IFN-γ stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179:901–909PubMedGoogle Scholar
  25. Brannigan JA, Dodson G, Duggleby HJ, Moody PCE, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378:416–419PubMedGoogle Scholar
  26. Brutkiewicz RR, Bennink JR, Yewdell JW, Bendalac A (1995) TAP-independent, β2-microglobulin- dependent surface expression of functional mouse CD1.1. J Exp Med 182:1913–1919PubMedGoogle Scholar
  27. Burgert H-G, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–997PubMedGoogle Scholar
  28. Burney RO, Pile KD, Gibson K, Calin A, Kennedy LG, Sinnott PJ, Powis SH, Wordsworth BP (1994) Analysis of the MHC class II encoded components of the HLA class I antigen processing pathway in ankylosing spondylitis. Ann Rheum Dis 53:58–60PubMedGoogle Scholar
  29. Caillat-Zucman S, Bertin E, Timsit J, Boitard C, Assan R, Bach J-F (1993) Protection from insulin dependent diabetes mellitus is linked to a peptide transporter gene. Eur J Immunol 23:1784–1788PubMedGoogle Scholar
  30. Carreno BM, Solheim J, Harris M, Stroynowski I, Connolly J, Hansen T (1995) Tap associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man. J Immunol 155:4726–4733PubMedGoogle Scholar
  31. Cerundolo V, Kelly A, Elliott T, Trowsdale J, Townsend A (1995) Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport. Eur J Immunol 25:554–562PubMedGoogle Scholar
  32. Cerundolo V, Benham A, Braud V, Mukherjee S, Gould K, Macino B, Neefjes J, Townsend A (1997) The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J Immunol 27:336–341PubMedGoogle Scholar
  33. Cesari MM, Dulay SJ, Caillens H, Robert C, Rouch C, Cadet F, Pabion M (1997) A new human transporter associated with antigen processing allele encodes a large C-terminal protein domain. Immunogenetics 45:280–281PubMedGoogle Scholar
  34. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961–972PubMedGoogle Scholar
  35. Chen W, Khilko S, Fecondo J, Margulies DH, McCluskey J (1994) Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues. J Exp Med 180:1471–1483PubMedGoogle Scholar
  36. Colonna M, Bresnahan M, Bahram S, Strominger JL, Spies T (1992) Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci USA 89:3932–3936PubMedGoogle Scholar
  37. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847PubMedGoogle Scholar
  38. Cox JH, Galardy P, Bennink JR, Yewdell JW (1995) Presentation of endogenous and exogenous antigens is not affected by inactivation of El ubiquitin-activating enzyme in temperature-sensitive cell lines. J Immunol 154:511–519PubMedGoogle Scholar
  39. Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, Rock KL (1997) Lactacystin and clasto-lactacystin ß-lactone modify multiple proteasome ß subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 272:13437–13445PubMedGoogle Scholar
  40. De la Salle H, Hanau D, Fricker D, Urlacher A, Kelly A, Salamero J, Powis SH, Donato L, Bausinger H, Laforet M, Jeras M, Spehner D, Bieber T, Falkenrodt A, Cazenave J-P, Trowsdale J, Tongio M-M (1994) Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265:237–241PubMedGoogle Scholar
  41. Del Val M, Schlicht H-J, Ruppert T, Reddehase MJ, Koszinowski UH (1991) Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145–1153PubMedGoogle Scholar
  42. Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-golgi compartment. J Exp Med 176:729–738PubMedGoogle Scholar
  43. Deng GY, Muir A, Maclaren NK, She J-X (1995) Association of LMP2 and LMP7 genes within the major histocompatibility complex with insulin-dependent diabetes mellitus: population and family studies. Am J Hum Genet 56:528–534PubMedGoogle Scholar
  44. Deng Y, Yewdell JW, Eisenlohr LC, Bennink JR (1997) MHC affinity, peptide liberation, T cell repertoire, and immunodominance all contribute to the paucity of MHC class-I restricted peptides recognized by antiviral CTL. J Immunol 158:1507–1515PubMedGoogle Scholar
  45. Deverson EV, Gow ER, Coadwell WJ, Monaco JJ, Butcher GW, Howard JC (1990) MHC class II region encoding proteins related to the multidrug resistance family of membrane transporters. Nature 348:738–741PubMedGoogle Scholar
  46. Dick LR, Aldrich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK, DeMartino GN, Bevan MJ, Forman JM, Slaughter CA (1994) Proteolytic processing of ovalbumin and ß-galactosidase by the proteasome to yield antigenic peptides. J Immunol 152:3884–3894PubMedGoogle Scholar
  47. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188PubMedGoogle Scholar
  48. Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic S, Schild H, Rammensee H-G (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262PubMedGoogle Scholar
  49. Djilali-Saiah I, Caillat-Zucman S, Schmitz J, Chaves-Vieira ML, Bach J-F (1994) Polymorphism of antigen processing (TAP, LMP) and HLA class II genes in celiac disease. Hum Immunol 40:8–16PubMedGoogle Scholar
  50. Donn RP, Davies EJ, Holt PL, Thompson W, Oilier W (1994) Increased frequency of TAP2B in early onset pauciarticular juvenile chronic arthritis. Ann Rheum Dis 53:261–264PubMedGoogle Scholar
  51. Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365:262–264PubMedGoogle Scholar
  52. Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 1 1S regulator of the multicatalytic protease. J Biol Chem 267:22369–22377PubMedGoogle Scholar
  53. Eggers M, Boes-Fabian B, Ruppert T, Kloetzel P-M, Koszinowski UH (1995) The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 182:1865–1870PubMedGoogle Scholar
  54. Ehring B, Meyer TH, Eckerskom C, Lottspeich F, Tampe R (1996) Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes. Eur J Biochem 235:404–415PubMedGoogle Scholar
  55. Eisenlohr LC, Yewdell JW, Bennink JR (1992) Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med 175:481–487PubMedGoogle Scholar
  56. Elliott T, Willis A, Cerundolo V, Townsend A (1995) Processing of major histocompatibility class I restricted antigens in the endoplasmic reticulum. J Exp Med 181:1481–1491PubMedGoogle Scholar
  57. Engelhard VH (1994) Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 12:181–207PubMedGoogle Scholar
  58. Epperson DE, Arnold D, Spies T, Cresswell P, Pober J, Johnson D (1992) Cytokines increase transporter in antigen processing-1 expression more rapidly than HLA class I expression in endothelial cells. J Immunol 149:3297–3301PubMedGoogle Scholar
  59. Fakler J, Schmitt-Egenolf M, Vejbaesya S, Boehncke W-H, Sterry W, Eiermann TH (1994) Analysis of TAP2 and HLA-DP gene polymorphism in psoriasis. Hum Immunol 40:299–302PubMedGoogle Scholar
  60. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee H-G (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296PubMedGoogle Scholar
  61. Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386:510–514PubMedGoogle Scholar
  62. Fehling HJ, Swat W, Laplace C, Kühn R, Rajewsky K, Müller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265:1234–1237PubMedGoogle Scholar
  63. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber S (1995) Inhibition of proteasome activities and subunit-specific amino terminal threonine modification of lactacystin. Science 268:726–731PubMedGoogle Scholar
  64. Früh K, Yang Y, Arnold D, Chambers J, Wu L, Waters JB, Spies T, Peterson P (1992) Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J Biol Chem 267:22131–22140PubMedGoogle Scholar
  65. Früh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, Peterson P, Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–418PubMedGoogle Scholar
  66. Gabathuler R, Reid G, Kolaitis G, Driscoll J, Jefferies WA (1994) Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med 180:1415–1425PubMedGoogle Scholar
  67. Gaczynska M, Rock, KL, Goldberg AL (1993) γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264–267PubMedGoogle Scholar
  68. Gaczynska M, Rock KL, Spies T, Goldberg AL (1994) Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc Natl Acad Sci USA 91:9213–9217PubMedGoogle Scholar
  69. Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A, Cook RF, Brunner J, McGrach DJ, Ploegh HL (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2 terminal 35 residues. J Exp Med 185:1565–1572PubMedGoogle Scholar
  70. Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Yvonne Jones E, Jakobsen BK (1997) Crystal structure of the complex between human CD8αa and HLA-A2. Nature 387:630–634PubMedGoogle Scholar
  71. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141PubMedGoogle Scholar
  72. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996a) An aß T cell receptor structure at 2.5 Ǻ and its orientation in the TCR-MHC complex. Science 274:209–219PubMedGoogle Scholar
  73. Garcia KC, Scott CA, Brunark A, Carbone FR, Peterson PA, Wilson IA, Teyton L (1996b) CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384:577–581PubMedGoogle Scholar
  74. Gaskins HR, Monaco JJ, Leiter EH (1992) Expression of intra-MHC transporter {Ham) genes and class I antigens in diabetes-susceptible NOD mice. Science 256:1826–1828PubMedGoogle Scholar
  75. Gileadi U, Higgins CF (1997) Membrane topology of the ATP-binding cassette transporter associated with antigen presentation (Tapi) expressed in Escherichia coli. J Biol Chem 273:11103–11108Google Scholar
  76. Gooding LR, O’Connell KA (1983) Recognition by cytotoxic T lymphocytes of cells expressing fragments of the SV40 tumor antigen. J Immunol 131:2580–2586PubMedGoogle Scholar
  77. Goth S, Nguyen V, Shastri N (1996) Generation of naturally processed peptide/MHC class I complexes is independent of the stability of endogenously synthesized precursors. J Immunol 157:1894–1904PubMedGoogle Scholar
  78. Grandea AG, Androlewicz MJ, Raghbir SA, Geraghty DE, Spies T (1995) Dependence of peptide binding by MHC class I molecules on their interaction with TAP peptide transporters. Science 270:105–108PubMedGoogle Scholar
  79. Grant EP, Michalek MT, Goldberg AL, Rock KL (1995) Rate of antigen degradation by the ubiquitin-proteasome pathway influences MHC class I presentation. J Immunol 155:3750–3758PubMedGoogle Scholar
  80. Gray CW, Slaughter CA, DeMartino GN (1994) PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 236:7–15PubMedGoogle Scholar
  81. Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U, Kloetzel P-M (1995) The interferon-γ-inducible 1 1S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by 20S proteasome in vitro. J Biol Chem 270:23808–23815PubMedGoogle Scholar
  82. Groettrup M, Kraft R, Kostka S, Standera S, Stohwasser R, Kloetzel P-M (1996a) A third interferon-γ-induced subunit exchange in the 20S proteasome. Eur J Immunol 26:863–869PubMedGoogle Scholar
  83. Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee H-G, Koszinowski UH, Kloetzel P-M (1996b) A role of the proteasome regulator PA28α in antigen presentation. Nature 381:166–168PubMedGoogle Scholar
  84. Groll M, Ditze L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4Ä resolution. Nature 386:463–471PubMedGoogle Scholar
  85. Hammond SA, Bollinger RC, Tobery TW, Siciliano RF (1993) Transporter-dependent processing of HIV-1 envelope protein for recognition by CD8+ T cells. Nature 364:158–161PubMedGoogle Scholar
  86. Hanau D, Fricker D, Bieber T, Esposito-Farese M-E, Bausinger H, Cazenave J-P, Donato L, Tongio M-M, de la Salle H (1994) CD1 expression is not affected by human peptide transporter deficiency. Hum Immunol 41:61–68PubMedGoogle Scholar
  87. Harding C, France J, Song R, Farah JM, Chatterjee S, Iqbal M, Siman R (1995) Novel dipeptide aldehydes are proteasome inhibitors and block the MHC-I antigen processing pathway. J Immunol 155:1767–1775PubMedGoogle Scholar
  88. Heemels M-T, Ploegh H (1994) Substrate specificity of allelic variants of the TAP peptide transporter. Immunity 1:775–784PubMedGoogle Scholar
  89. Heemels M-T, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491PubMedGoogle Scholar
  90. Heemels M-T, Schumacher TNM, K Wonigeit, Ploegh HL (1993) Peptide translocation by variants of the transporter associated with antigen processing. Science 262:2059–2061PubMedGoogle Scholar
  91. Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF, Engelhard VH (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255:1264–1266PubMedGoogle Scholar
  92. Hengel H, Koopman J-O, Flohr T, Muranyi W, Goulmy E, Hämmerling GJ, Koszinowski UH, Momburg F (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–632PubMedGoogle Scholar
  93. Hesresbach D, Alizadeh M, Bretagne JF, Gautier A, Quillivic F, Lemarchand B, Gosselin M, Genetet B, Semana G (1996) Investigation of the association of major histocompatibility complex genes, including HLA class I, class II and Tap genes, with clinical forms of Crohn’s disease. Eur J Immunogen 23:141–151PubMedGoogle Scholar
  94. Hill A, Judovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415PubMedGoogle Scholar
  95. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi N, Tamura T, Ichihara A, Tanaka K (1996) Newly pair of proteasomal subunits regulated reciprocally by interferon γ. J Exp Med 183:1807–1816PubMedGoogle Scholar
  96. Holcombe HR, Castano AR, Cheroutre H, Teitell M, Maher JK, Peterson PA, Kronenberg M (1995) Nonclassical behavior of the thymus leukemia antigen: peptide transporter-independent expression of a nonclassical class I molecule. J Exp Med 181:1433–1443PubMedGoogle Scholar
  97. Huang J, Kwong J, Sun EC-Y, Liang TJ (1996) Proteasome complex as a potential cellular target of hepatitis B virus X protein. J Virol 70:5582–5591PubMedGoogle Scholar
  98. Hughes EA, Ortmann B, Surman M, Cresswell P (1996) The protease inhibitor, N-acetyl-L-leucyl-L- leucyl-L-norleucinal, decreases the pool of major histocompatibility complex class I-binding peptides and inhibits peptide trimming in the endoplasmic reticulum. J Exp Med 183:1569–1578PubMedGoogle Scholar
  99. Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci USA 94:1896–1901PubMedGoogle Scholar
  100. Jameson SC, Bevan MJ (1992) Dissection of major histocompatibility complex (MHC) and T cell receptor contact residues in a Kb-restricted ovalbumin peptide and an assessment of the predictive power of MHC-binding motifs. Eur J Immunol 22:2663–2667PubMedGoogle Scholar
  101. Jiang H, Monaco JJ (1997) Sequence and expression of mouse proteasome activator PA28 and the related autoantigen, Ki. Immunogenetics 46:93–98PubMedGoogle Scholar
  102. Joly E, Deverson EV, Coadwell WJ, Günther E, Howard JC, Butcher GW (1994) The distribution of Tap2 alleles among laboratory rat RT1 haplotypes. Immunogenetics 40:45–53PubMedGoogle Scholar
  103. Jondal M, Schirmbeck R, Reimann J (1996) MHC class I-restricted CTL responses to exogenous antigens. Immunity 5:295–302PubMedGoogle Scholar
  104. Jones TR, Hanson LK, Sun L, Slater JS, Stenberrg RM, Campbell AE (1995) Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69:4830–4841PubMedGoogle Scholar
  105. Jones TR, Wiertz EJ, Sun L, Fish EN, Nelson JA, Ploegh H (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA 93:11327–11333PubMedGoogle Scholar
  106. Joyce S, Kuzushima K, Kepecs G, Angeletti RH, Nathenson SG (1994) Characterization of an incompletely assembled major histocompatibility class I molecule (H-2Kb) associated with unusually long peptides: implications for antigen processing and presentation. Proc Natl Acad Sci USA 91:4145–4149PubMedGoogle Scholar
  107. Kandil E, Namikawa C, Nonaka M, Greenberg AS, Flajnik MF, Ishibashi T, Kasahara M (1996) Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates:implications for the origin of MHC class I restricted antigen presentation. J Immunol 156:4245–4253PubMedGoogle Scholar
  108. Kellar-Wood HF, Powis SH, Gray J, Compson DAS (1994) MHC-encoded TAP1 and TAP2 dimorphisms in multiple sclerosis. Tissue Antigens 43:129–132PubMedGoogle Scholar
  109. Kelly A, Powis S, Kerr L-A, Mockridge I, Elliot T, Bastin J, Uchanska-Ziegler B, Ziegler A, Trowsdale J, Townsend A (1992) Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355:641–644PubMedGoogle Scholar
  110. Khanna R, Burrows SR, Argaet V, Moss D (1994) Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes, restores immunodeficiency of an antigen processing defective tumor cell line. Int Immunol 6:639–645PubMedGoogle Scholar
  111. Kim T-G, Lee Y-H, Choi H-B, Han H (1996) Two newly discovered alleles of major histocompatibility complex-encoded LMP7 in Korean populations. Immunogenetics 46:61–64Google Scholar
  112. Kishi F, Suminami Y, Monaco JJ (1993) Genomic organization of the mouse Lmp-2 gene and characteristic structure of its promoter. Gene 133:243–248PubMedGoogle Scholar
  113. Kleijmeer MJ, Kelly A, Geuze HJ, Slot JW, Townsend A, Trowsdale J (1992) Location of MHC- encoded transporters in the cytoplasmic reticulum and cis-Golgi. Nature 357:342–344PubMedGoogle Scholar
  114. Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Capmbell AE, Koszinowski, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694PubMedGoogle Scholar
  115. Koopman JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 26:1720–1728Google Scholar
  116. Kopp F, Dahlmann B, Hendil KB (1993) Evidence indicating that the human proteasome is a complex dimer. J Mol Biol 229:14–19PubMedGoogle Scholar
  117. Kopp F, Kristensen P, Hendil KB, Johnsen A, Sobek A, Dahlmann B (1995) The human proteasome subunit HsN3 is located in the inner rings of the complex dimer. J Mol Biol 248:264–272PubMedGoogle Scholar
  118. Kopp F, Hendil KB, Dahlmann B, Kristensen P, Sobek A, Uerkvitz W (1997) Subunit arrangement in the human 20S proteasome. Proc Natl Acad Sci USA 94:2939–2944PubMedGoogle Scholar
  119. Kuckelkom U, Frentzel S, Kraft R, Kostka S, Groettrup M, Kloetzel P-M (1995) Incorporation of major histocompatibility complex-encoded subunits LMP-2 and LMP-7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-γ. Eur J Immunol 25:2605–2611Google Scholar
  120. Lanier LL (1997) Natural killer cells: from no receptors to too many. Immunity 6:371–378PubMedGoogle Scholar
  121. Larsen F, Solheim J, Kristensen T, Kolsto A-B, Prydz H (1993) A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet 2:1589–1595PubMedGoogle Scholar
  122. Lee N, Malacko AR, Ishitani A, Chen M, Bajorath J, Marquardt H, Geraghty D (1995) The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600PubMedGoogle Scholar
  123. Lee SP, Thomas WA, Blake NW, Rickinson AB (1996) Transporter (TAP)-independent processing of a multiple membrane-spanning protein, the Epstein-Barr virus latent membrane protein 2. Eur J Immunol 26:1875–1885PubMedGoogle Scholar
  124. Lehner PJ, Kartunen JT, Wilkinson GWG, Russell P (1997) The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA 94:6904–6909PubMedGoogle Scholar
  125. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr nuclear antigen-1. Nature 375:685–688.PubMedGoogle Scholar
  126. Lewis JW, Neisig A, Neefjes J, Elliot T (1996) Point mutations in the a2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr Biol 6:873–883PubMedGoogle Scholar
  127. Lipford GB, Hoffman M, Wagner H, Heeg K (1993) Primary in vivo responses to ovalbumin: probing the predictive value of the Kb binding motif. J Immunol 150:1212–1222PubMedGoogle Scholar
  128. Ljunggren H-G, Stam NJ, Öhlén C, Neefjes JJ, Höglund P, Heemels M-T, Bastin J, Schumacher TNM, Townsend A, Kärre K, Ploegh HL (1990) Empty MHC class I molecules come out in the cold. Nature 346:476–480PubMedGoogle Scholar
  129. Ljunggren H-G, van Kaer L, Ploegh HL, Tonegawa S (1994) Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci USA 91:6520–6524PubMedGoogle Scholar
  130. Lobigs M, Rothenfluh H, Blanden RV, Mullbacher A (1995) Polymorhic peptide transporters in MHC class I monomorphic Syrian hamster. Immunogenetics 42:398–407PubMedGoogle Scholar
  131. Lofti M, Sastry A, Ye M, Van der Meulen J, Dosch HM, Singal DP (1994) HLA-DQ and TAP2 genes in patients with insulin-dependent diabetes mellitus. Immunol Lett 41:201–204Google Scholar
  132. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilus at 3.4 Ǻ resolution. Science 268:533–539PubMedGoogle Scholar
  133. Ma C-P, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267:10515–10523PubMedGoogle Scholar
  134. Machold RP, Wiertz EJ, Jones TR, Ploegh HL (1997) The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine histocompatibility complex (MHC) class I heavy chains. J Exp Med 185:363–366PubMedGoogle Scholar
  135. Maksymowych WP, Russell AS (1995) Polymorphism in the LMP2 gene influences the relative risk for acute anterior uveitis in unselected patients with ankylosing spondylitis. Clin Invest Med 18:42–46PubMedGoogle Scholar
  136. Maksymowych WP, Wessler A, Schmitt-Engenolf M, Suarez-Almazor M, Ritzel G, Von Börstel RC, Pazderka F, Russell AS (1994) Polymorphism in an HLA linked proteasome gene influences phenotypic expression of disease in HLA-B27 positive individuals. J Rheumatol 21:665–669PubMedGoogle Scholar
  137. Maksymowych WP, Tao S, Luong M, Suarez-Almazor M, Nelson R, Pazderka F, Russell AS (1995) Polymorphism in the LMP2 and LMP7 genes and adult rheumatoid arthritis: no relationship with disease susceptibility or outcome. Tissue Antigens 46:136–139PubMedGoogle Scholar
  138. Malarkanan S, Afrarian M, Shastri N (1995a) A rare cryptic translation product is presented by Kb MHC class I molecule to alloreactive T-cells. J Exp Med 182:1739–1750Google Scholar
  139. Malarkanan S, Goth S, Buchholz DR, Shastri N (1995b) The role of MHC class I molecules in the generation of endogenous peptide/MHC complexes. J Immunol 154:585–598Google Scholar
  140. Marsal S, Hall MA, Panayi GS, Lanchbury JS (1994) Association of TAP2 polymorphism with rheumatoid arthritis is secondary to allelic association with HLA-DRB1. Arthritis Rheum 37:504–513PubMedGoogle Scholar
  141. Martinez-Laso J, Martin-Villa JM, Alvarez M, Martinez-Quiles N, Lledo G, Amaiz-Villena A (1994) Susceptibility to insulin-dependent diabetes mellitus and short cytoplasmic ATP-binding domain TAP2 01 alleles. Tissue Antigens 44:184–188PubMedGoogle Scholar
  142. Marusina K, Reid G, Gabathuler R, Jefferies W, Monaco JJ (1997a) Novel peptide-binding proteins and peptide transport in normal and TAP-deficient microsomes. Biochemistry 36:856–863PubMedGoogle Scholar
  143. Marusina K, Iyer M, Monaco JJ (1997b) Allelic variation in the mouse Tap-1 and Tap-2 transporter genes. J Immunol 158:5251–5256PubMedGoogle Scholar
  144. Maudsley DJ, Pound JD (1991) Modulation of MHC antigen expression by viruses and oncogenes. Immunol Today 12:429–431PubMedGoogle Scholar
  145. Meyer TH, van Endert PM, Uebel S, Ehring B, Tampe (1994) Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Lett 351:443–447PubMedGoogle Scholar
  146. Mey-Tal SV, Schechter C, Ehrlich R (1997) Synthesis and turnover of ß2-microglobulin in Ad12-transformed cells defective in assembly and transport of class I major histocompatibility complex molecules. J Biol Chem 272:353–361PubMedGoogle Scholar
  147. Michalek MT, Grant EP, Gramm C, Goldberg AL, Rock KL (1993) A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 363:552–554PubMedGoogle Scholar
  148. Middleton D, Megaw G, Cullen C, Hawkins S, Darke C, Savage D (1994) TAPI and TAP2 polymorphism in multiple sclerosis patients. Hum Immunol 40:131–134PubMedGoogle Scholar
  149. Min W, Pober JS, Johnson DR (1996) Kinetically coordinated induction of TAPI and HLA class I by IFN-y. J Immunol 156:3174–3183PubMedGoogle Scholar
  150. Moins-Teisserenc H, Semana G, Alizadeh M, Loiseau P, Bobrynina V, Deschamps I, Edan G, Birebent B, Genetet B, Sabouraud O, Charron D (1995) TAP2 gene polymorphism contributes to genetic susceptibility to multiple sclerosis. Hum Immunol 42:195–202PubMedGoogle Scholar
  151. Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling G, Neefjes JJ (1994a) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367:648–651PubMedGoogle Scholar
  152. Momburg F, Roelse J, Hämmerling GJ, Neefjes (1994b) Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 179:1613–1623PubMedGoogle Scholar
  153. Momburg F, Armandola EA, Post M, Hämmerling GJ (1996) Residues in TAP2 controlling substrate specificity. J Immunol 156:1756–1763PubMedGoogle Scholar
  154. Monaco JJ (1992) A molecular model of MHC class I-restricted antigen processing. Immunol Today 13:173–79PubMedGoogle Scholar
  155. Monaco JJ, McDevitt HO (1986) The LMP antigens: a stable MHC-controlled multisubunit protein complex. Hum Immunol 15:416–426PubMedGoogle Scholar
  156. Monaco JJ, Nandi D (1995) The genetics of proteasomes and antigen processing. Annu Rev Genet 29:729–754PubMedGoogle Scholar
  157. Monaco JJ, Cho S, Attaya M (1990) Transport protein genes in the murine MHC: possible implications for antigen processing. Science 250:1723–1726PubMedGoogle Scholar
  158. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54:777–785PubMedGoogle Scholar
  159. Morrison LA, Lukacher AE, Braciale VL, Fan DP, Braciale TJ (1986) Differences in antigen presentation to MHC class I- and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J Exp Med 163:903–921PubMedGoogle Scholar
  160. Müllbacher A, Lobigs M (1995) Up-regulation of MHC class I by flavivirus-induced peptide translocation into the endoplasmic reticulum. Immunity 3:207–214PubMedGoogle Scholar
  161. Muller K, Ebensperger C, Tampe R (1994) Nucleotide binding to the hydrophilic C terminal domain of the transporter associated with antigen processing (TAP). J Biol Chem 19:14032–14037Google Scholar
  162. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by 26S proteasomes without ubiquitination. Nature 360:597–599PubMedGoogle Scholar
  163. Nakanishi K, Kobayashi T, Murase T, Kosaka K (1994) Lack of association of the transporter associated with antigen processing with Japanese insulin-dependent diabetes mellitus. Metabolism 43:1013–1017PubMedGoogle Scholar
  164. Nandi D, Jiang H, Monaco JJ (1996a) Identification of MECL-1 (LMP-10) as the third IFNy-inducible proteasome subunit. J Immunol 156:2361–2364PubMedGoogle Scholar
  165. Nandi D, Iyer MN, Monaco JJ (1996b) Molecular and serological analysis of polymorphisms in the murine major histocompatibility-encoded proteasome subunits, LMP-2 and LMP-7. Exp Clin Immunogenet 13:20–29PubMedGoogle Scholar
  166. Nandi D, Woodward E, Ginsburg D, Monaco JJ (1997) Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor ß subunits. EMBO J 16:5363–5375PubMedGoogle Scholar
  167. Neefjes JJ, Momburg F, Hämmerling GJ (1993) Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–771PubMedGoogle Scholar
  168. Neefjes JJ, Gottfried E, Roelse J, Gromme M, Obst R, Hämmerling GJ, Momburg F (1995) Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 25:1133–1136PubMedGoogle Scholar
  169. Neisig A, Roelse J, Sijts AJ, Ossendorp F, Feltkamp MCW, Kast WM, Melief CJM, Neefjes JJ (1995) Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I presentable peptides and the effect of flanking sequences. J Immunol 154:1273–1279PubMedGoogle Scholar
  170. Neisig A, Wubbolts R, Zang X, Melief C, Neefjes J (1996) Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J Immunol 156:3196–3206PubMedGoogle Scholar
  171. Niedermann G, Butz S, Ihlenfeldt G, Grimm R, Lucchiari M, Hoschutzky, Jung G, Maier B, Eichmann K (1995) Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2:289–299PubMedGoogle Scholar
  172. Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, Hunt DF, Eichmann K (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93:8572–8577PubMedGoogle Scholar
  173. Nijenhuis M, Hämmerling GJ (1996) Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. J Immunol 157:5467–5477PubMedGoogle Scholar
  174. Nijenhuis M, Schmitt S, Armandola E, Obst R, Brunner J, Hämmerling G (1996) Identification of a contact region of the transporter associated with antigen processing. J Immunol 156:2186–2195PubMedGoogle Scholar
  175. Oldstone MBA, Lewicki H, Borst P, Hudrisier D, Gairin J (1995) Discriminated selection among viral peptides with the appropriate anchor residues: implications for the size of the cytotoxic T-lymphocyte repertoire and control of viral infection. J Virol 69:7423–7429PubMedGoogle Scholar
  176. Orlowski M, Cardozo C, Michaud C (1993) Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32:1563–1572PubMedGoogle Scholar
  177. Ortiz-Navarette V, Hämmerling GJ (1991) Surface appearance and instability of empty H-2 class I molecules under physiological conditions. Proc Natl Acad Sci USA 88:3594–3597Google Scholar
  178. Ortmann B, Androlewicz MJ, Cresswell P (1994) MHC class I/ß2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368:864–867PubMedGoogle Scholar
  179. Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel P-M, Neefjes J, Koszinowski U, Melief C (1996) A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115–124PubMedGoogle Scholar
  180. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74PubMedGoogle Scholar
  181. Pazmany L, Rowland-Jones S, Heut S, Hill A, Sutton J, Murray R, Brooks J, McMichael A (1992) Genetic modulation of antigen presentation by HLA-B27 molecules. J Exp Med 175:361–369PubMedGoogle Scholar
  182. Peace-Brewer A, Tussey L, Matsui M, Li G, Quinn DG, Frelinger JA (1996) A point mutation in HLA-A*201 results in failure to bind the TAP complex and to present virus derived peptides to CTL. Immunity 4:505–514PubMedGoogle Scholar
  183. Pearce RB, Trigler L, Svaas EK, Peterson CM (1993) Polymorphism in the mouse Tap-1 gene: association with abnormal CD8+ T cell development in the nonobese nondiabetic mouse. J Immunol 151:5338–5347PubMedGoogle Scholar
  184. Peters J-M, Cejka Z, Robin Harris J, Kleinschmidt JA, Baumeister W (1993) Structural features of the 26S proteasome complex. J Mol Biol 234:932–937PubMedGoogle Scholar
  185. Ploski R, Undlien DE, Vinjie O, Forre O, Thorsby E, Ronningen K (1994) Polymorphism of human major histocompatibility complex-encoded transporter associated with antigen processing (TAP) genes and susceptibility to Juvenile rheumatoid arthritis. Hum Immunol 39:54–60PubMedGoogle Scholar
  186. Powis SJ, Townsend ARM, Deverson EV, Bastin J, Butcher GW, Howard JC (1991a) Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354:528–531PubMedGoogle Scholar
  187. Powis S J, Howard JC, Butcher GW (1991 b) The major histocompatibility class II-linked cim locus controls the kinetics of intracellular transport of a classical class I molecule. J Exp Med 173:913–921PubMedGoogle Scholar
  188. Powis SJ, Deverson EV, Coadwell WJ, Cruela A, Huskisson NS (1992a) Effect of polymorphism of an MHC linked transporter on the peptides assembled in a class I molecule. Nature 357:211–215PubMedGoogle Scholar
  189. Powis S, Mockridge I, Kelly A, Kerr L-A, Glynne R, Gilead U, Beck S, Trowsdale J (1992b) Polymorphism in a second ABC transporter gene located within the class II region of the human major histocompatibility complex. Proc Natl Acad Sci USA 89:1463–1467PubMedGoogle Scholar
  190. Powis S, Tonks S, Mockridge I, Kelly A, Bodmer J, Trowsdale J (1993) Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics 37:373–380PubMedGoogle Scholar
  191. Powis SJ, Young L, Joly E, Barker P, Richardson L, Brandt RP, Melief C, Howard J, Butcher G (1996) The rat cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity 4:159–165PubMedGoogle Scholar
  192. Pryhuber KG, Murray KJ, Donnelly P, Passo MH, Maksymowych WP, Glass DN, Giannini EH, Colbert RA (1996) Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis. J Rheumatol 23:747–752PubMedGoogle Scholar
  193. Pühler G, Pitzer F, Zwickl P, Baumeister W (1994) Proteasomes: multisubunit proteinases common to Thermoplasma and eucaryotes. Syst Appl Microbiol 16:734–741Google Scholar
  194. Rammensee H-G (1996) Antigen presentation — recent developments. Int Arch Allergy Immunol 110:299–307PubMedGoogle Scholar
  195. Rammensee H-G, Friede T, Stevanovic S, (1995) MHC ligands and peptide motifs. First listing. Immunogenetics 41:178–228PubMedGoogle Scholar
  196. Realini C, Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1994) Molecular cloning and expression of a γ-interferon-inducible activator of the multicatalytic protease. J Biol Chem 269:20727–20732.PubMedGoogle Scholar
  197. Reybum HT, Mandelboim O, Vales-Gömez M, Davis DM, Pazmany L, Strominger J (1997) The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386:514–517Google Scholar
  198. Rock KL (1996) A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 17:131–137PubMedGoogle Scholar
  199. Rock KL, Gramm C, Benacerraf B (1991) Low temperature and peptide favor the formation of class I heterodimers on RMA-S cells at the cell surface. Proc Natl Acad Seci USA 88:4200–4204Google Scholar
  200. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMedGoogle Scholar
  201. Roelse J, Gromme M, Momburg F, Hämmerling G, Neefjes J (1994) Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J Exp Med 180:1591–1597PubMedGoogle Scholar
  202. Rotem-Yehudar R, Groettrup M, Soza A, Kloetzel PM, Ehrlich R (1996) LMP-associated proteolytic activities and TAP-dependent peptide transport for class I MHC molecules are suppressed in cell lines transformed by highly oncogenic adenovirus 12. J Exp Med 183:499–514PubMedGoogle Scholar
  203. Rousset R, Desbois C, Bantignies F, Jalinot P (1996) Effects on NFicBl/pl05 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. Nature 381:328–331PubMedGoogle Scholar
  204. Rowland-Jones SL, Powis SH, Sutton J, Mockridge I, Gotch FM, Murray N, Hill AB, Rosenberg WM, Trowsdale J, McMichael AJ (1993) An antigen processing polymorphism revealed by HLA-B8-restricted cytotoxic T lymphocytes which does not correlate with TAP gene polymorphism. Eur J Immunol 23:1999–2004PubMedGoogle Scholar
  205. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114PubMedGoogle Scholar
  206. Sandberg JK, Chambers BJ, Van Kaer L, Karre K, Ljunggren H-G (1996) TAPI-deficient mice select a CD8+ T cell repertoire that displays both diversity and peptide specificity. Eur J Immunol 26:288–293PubMedGoogle Scholar
  207. Schmidtke G, Kraft R, Kostka S, Henklein P, Frommel C, Lowe J, Huber R, Kloetzel P-M, Schmidt M (1996) Analysis of mammalian 20S proteasome biogenesis: the maturation of (3 subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15:6887–6898PubMedGoogle Scholar
  208. Schumacher TNM, Heemels M-T, Neefjes JJ, Kast WM, Melief CJM, Ploegh H (1990) Direct binding of peptides to empty MHC class I molecules on intact cells and in vitro. Cell 62:563–567PubMedGoogle Scholar
  209. Schumacher TNM, Kantesaria DV, Heemels M-T, Ashton-Rickardt PG, Shepherd JC, Früh K, Yang Y, Peterson P, Tonegawa S, Ploegh H (1994a) Peptide length and specificity of the mouse TAP1/TAP2 translocator. J Exp Med 179:533–540PubMedGoogle Scholar
  210. Schumacher TNM, Kantesaria D, Serreze DV, Roopenian DC, Ploegh H (1994b) Transporters from H-2b, H-2d, H-2S, H-2k, and H-2g7 (NOD/Lt) haplotype translocate similar sets of peptides. Proc Natl Acad Sci USA 91:13004–13008PubMedGoogle Scholar
  211. Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268:579–582PubMedGoogle Scholar
  212. Seemuller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature 382:468–470PubMedGoogle Scholar
  213. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WA, Melief CJM, Oseroff C, Yuan L, Ruppert J, Sidney J, del Guercio M-F, Southwood S, Kubo RT, Chesnut RW, Gret HM, Chisari FV (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592PubMedGoogle Scholar
  214. Shastri N, Nguyen V, Gonzalez F (1995a) Major histocompatibility class I molecules can present cryptic translation products to T-cells. J Biol Chem 270:1088–1091PubMedGoogle Scholar
  215. Shastri N, Serwold T, Gonzalez F (1995b) Presentation of endogenous peptide/MHC class I complexes is profoundly influenced by specific C-terminal flanking residues. J Immunol 155:4339–4346PubMedGoogle Scholar
  216. Shepherd JC, Schumacher TNM, Ashton-Rickardt PG, Imaeda S, Ploegh HL, Janeway Jr CA, Tonegawa S (1993) TAPI-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 74:577–584PubMedGoogle Scholar
  217. Shimizu Y, DeMars R (1989) Production of human cells expressing individual transferred HLA-A, -B, -C genes using a HLA-A, -B, -C null human cell line. J Immunol 142:3320–3328PubMedGoogle Scholar
  218. Sijts AJ, Neisig A, Neefjes J, Pamer EG (1996a) Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 156:685–692Google Scholar
  219. Sijts AJ, Villanueva MS, Pamer EG (1996b) CTL epitope generation is tightly linked to cellular proteolysis of a Listeria monocytogenous antigen. J Immunol 156:1497–1503PubMedGoogle Scholar
  220. Siliciano RF, Soloski MJ (1995) MHC class I-restricted processing of transmembrane proteins. J Immunol 155:2–5PubMedGoogle Scholar
  221. Sinha AA, Lopez MT, McDevitt HO (1990) Autoimmune diseases: the failure of self tolerance. Science 248:1380–1388PubMedGoogle Scholar
  222. Snyder HL, Yewdell JW, Bennink JR (1994) Trimming of antigenic peptides in an early secretory compartment. J Exp Med 180:2389–2394PubMedGoogle Scholar
  223. Solheim JC, Harris, MR, Kindle CS, Hansen TH (1997) Prominence of p2-microglobulin, class I heavy chain conformation, and Tapasin in the interactions of class I heavy chain with calreticulin and the transporter associated with antigen processing. J Immunol 158:2236–2241PubMedGoogle Scholar
  224. Spies T, DeMars R (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351:323–324PubMedGoogle Scholar
  225. Spies T, Bresnahan M, Bahram S, Arnold D, Blanck G, Mellins E, Pious D, DeMars R (1990) A gene in the human major histocompatibility complex class II region controlling the class I antigen processing pathway. Nature 348:744–747PubMedGoogle Scholar
  226. Spies T, Cerundolo V, Colonna M, Cresswell P, Townsend A, DeMars R (1992) Presentation of viral antigen by MHC class I molecules is dependent on putative peptide transporter heterodimer. Nature 355:644–646PubMedGoogle Scholar
  227. Spriggs M (1996) One step ahead of the game: viral immunomodulatory molecules. Annu Rev Immunol 14:101–130PubMedGoogle Scholar
  228. Spurkland A, Knutsen I, Undlien DE, Vartdal F (1994) No association of multiple sclerosis to alleles at the TAP2 locus. Hum Immunol 39:299–301PubMedGoogle Scholar
  229. Stein RL, Melandri F, Dick L (1996) Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry 35:3899–3908PubMedGoogle Scholar
  230. Stohwasser R, Kuckelkom U, Kraft R, Kostka S, Kloetzel P-M (1996) 20S proteasome from LMP7 knock out mice reveals altered proteolytic activities and cleavage site preferences. FEBS Lett 383:109–113PubMedGoogle Scholar
  231. Stohwasser R, Standera S, Peters I, Kloetzel P-M, Groettrup M (1997) Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-γ-modulated proteasome subunits. Eur J Immunol 27:1182–1187PubMedGoogle Scholar
  232. Suh W-K, Cohen-Doyle MF, Friih K, Wang K, Peterson PA, Williams D (1994) Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264:1322–1325PubMedGoogle Scholar
  233. Suh W-K, Mitchell EK, Yang Y, Peterson PA, Waneck GL, Williams DB (1996) MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains. J Exp Med 184:337–348PubMedGoogle Scholar
  234. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat-shock protein chaperoned peptides. Science 269:1585–1588PubMedGoogle Scholar
  235. Sykulev Y, Joo M, Vturina I, Tsomides TT, Eisen H (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571PubMedGoogle Scholar
  236. Tabaczewski P, Stroynowski I (1994) Expression of secreted and glycosylphosphatidylinositol-bound Qa-2 molecules is dependent on functional TAP-2 peptide transporter. J Immunol 152:5268–5274PubMedGoogle Scholar
  237. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766–774PubMedGoogle Scholar
  238. Tanaka K, Tsurumi C (1997) The 26S proteasome:subunits and functions. Mol Biol Reports 24:3–11Google Scholar
  239. Tighe MR, Hall MA, Cardi E, Ashkenazi A, Lanchbury JS, Ciclitira PJ (1994) Associations between alleles of the major histocompatibility complex-encoded ABC transporter gene TAP2, HLA class II alleles, and celiac disease susceptibility. Hum Immunol 39:9–16PubMedGoogle Scholar
  240. Tobery TW, Siliciano RF (1997) Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 185:909–920PubMedGoogle Scholar
  241. Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–3266PubMedGoogle Scholar
  242. Townsend A, Bastin J, Gould K, Brownlee G, Andrew M, Coupar B, Boyle D, Chan S, Smith G (1988) Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med 168:1211–1224PubMedGoogle Scholar
  243. Townsend ARM, Bastin J, Gould K, Brownlee GG (1986) Cytotoxic T lymphocytes recognize influenza haemagglutinin that lacks a signal sequence. Nature 324:575–577PubMedGoogle Scholar
  244. Trowsdale J (1996) Molecular genetics of HLA class I and class II regions. In: Browning MJ, McMichael AJ (eds) HLA and MHC:genes, molecules and function. Bios, OxfordGoogle Scholar
  245. Trowsdale J, Hanson I, Mockridge I, Beck S, Townsend A, Kelly A (1990) Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature 348:741–744PubMedGoogle Scholar
  246. Uebel S, Meyer TH, Kraas W, Kienle S, Jung G, Wiesmuller, Tampe R (1995) Requirements for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries. J Biol Chem 270:18512–18516PubMedGoogle Scholar
  247. Urban RG, Chicz RM, Lane WS, Strominger JL, Rehm A, Kenter MJH, Uytdehaag FGCM, Ploegh H, Uchanska-Ziegler B, Zieglar A (1994) A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA 91:1534–1538PubMedGoogle Scholar
  248. Ustrell V, Pratt G, Rechsteiner M (1995a) Effects of interferon and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. Proc Natl Acad Sci USA 92:584–588PubMedGoogle Scholar
  249. Ustrell V, Realini C, Pratt G, Rechsteiner M (1995b) Human lymphoblast and erythrocyte multicatalytic proteases: differential peptidase activities and responses to the 1 1S regulator. FEBS Lett 376:155–158PubMedGoogle Scholar
  250. van Endert PM, Tampe R, Meyer TH, Tisch R, Bach J-F, McDevitt HO (1994a) A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1:491–500PubMedGoogle Scholar
  251. van Endert PM, Liblau RS, Patel SD, Fugger L, Lopez T, Pociot F, Nerup J, McDevitt HO (1994b) Major histocompatibility complex-encoded antigen processing gene polymorphism in IDDM. Diabetes 43:110–117PubMedGoogle Scholar
  252. van Endert PM, Riganelli D, Greco G, Fleischhauer K, Sidney J, Sette A, Bach J-F (1995) The peptide binding motif for the human transporter associated with antigen processing. J Exp Med 182:1883–1895PubMedGoogle Scholar
  253. Van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S (1992) TAPI mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71:1205–1214PubMedGoogle Scholar
  254. Van Kaer L, Ashton-Rickardt PG, Eichelberger M, Gaczynska M, Nagashima N, Rock KL, Goldberg AL, Doherty PC, Tonegawa S (1994) Altered peptidase and viral-specific T cell response in Lmp2 mutant mice. Immunity 1:533–541PubMedGoogle Scholar
  255. Van Santen HM, Woolsey A, Ashton-Rickardt PG, van Kaer L, Baas EJ, Bems A, Tonegawa S, Ploegh H (1995) Increase in positive selection of CD8+ T cells in TAPI mutant mice by human p2-microglobulin transgene. J Exp Med 181:787–792Google Scholar
  256. Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 93:12142–12149PubMedGoogle Scholar
  257. Villanueva MA, Fischer P, Feen K, Pamer EG (1994) Efficiency of MHC class I antigen processing, a quantitative analysis. Immunity 1:479–489PubMedGoogle Scholar
  258. Wang K, Früh K, Peterson PA, Yang Y (1994) Nucleotide binding of the C-terminal domains of the major histocompatibility complex-encoded transporter expressed in Drosophila melanogaster cells. FEBS Lett 350:337–341PubMedGoogle Scholar
  259. Wang P, Gyllner G, Kvist S (1996a) Selection and binding of peptides to human transporters associated with antigen processing and rat cim-a and -b. J Immunol 157:213–220PubMedGoogle Scholar
  260. Wang P, Raynoschek C, Svensson K, Ljunggren H-G (1996b) Binding of H-2Kb-specific peptides to TAP and major histocompatibility complex class I in microsomes from wild type, TAPI, and p2-microglobulin mutant mice. J Biol Chem 271:24830–24835PubMedGoogle Scholar
  261. Wang R-F, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA (1996c) Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 183:1131–1140PubMedGoogle Scholar
  262. Wei ML, Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356:443–446PubMedGoogle Scholar
  263. Wenzel T, Eckerskom C, Lottsspeich F, Baumeister W (1994) Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett 349:205–209PubMedGoogle Scholar
  264. White LC, Wright KL, Felix NJ, Ruffner H, Reis LFL, Pine R, Ting JP-Y (1996) Regulation of LMP2 and TAPI genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1-/- mice. Immunity 5:365–376PubMedGoogle Scholar
  265. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze H, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779PubMedGoogle Scholar
  266. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438PubMedGoogle Scholar
  267. Wipke BT, Jameson SC, Bevan MJ, Pamer EG (1993) Variable binding affinities of listeriolysin 0 peptides for the H-2Kd class I molecule. Eur J Immunol 23:2005–2010PubMedGoogle Scholar
  268. Wright KL, White LC, Kelly A, Beck S, Trowsdale J, Ting JP (1995) Coordinate regulation of the human TAPI and LMP2 genes from a shared bidirectional promotor. J Exp Med 181:1459–1471PubMedGoogle Scholar
  269. Yamazaki H, Tanaka M, Nagoya M, Fujimaki H, Sato K, Yago T, Nagata T, Minami M (1997) Epitope selection in major histocompatibility complex class I-mediated pathway is affected by the intracellular localization of an antigen. Eur J Immunol 27:347–353PubMedGoogle Scholar
  270. Yang B, Braciale TJ (1995) Characteristics of ATP-dependent peptide transport in isolated microsomes. J Immunol 155:3889–3896PubMedGoogle Scholar
  271. Yang B, Hahn YS, Hahn CS, Braciale TJ (1996) The requirements for proteasome activity in class I major histocompatibility complex antigen presentation is dictated by the length of preprocessed antigen. J Exp Med 183:1545–1552PubMedGoogle Scholar
  272. Yewdell JW, Bennink JR, Hosaka Y (1988) Cells process exogenous proteins for recognition by cytotoxic T lymphocytes. Science 239:637–640PubMedGoogle Scholar
  273. Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (Drips), a major sources of antigenic peptides for MHC class I molecules. J Immunol 157:1823–1826PubMedGoogle Scholar
  274. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14:369–396PubMedGoogle Scholar
  275. York LA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–535PubMedGoogle Scholar
  276. Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K, Ichihara A (1993) Molecular characterization of the 26S proteasome complex from rat liver. J Struct Biol 111 :200–211PubMedGoogle Scholar
  277. Zanelli E, Zhou P, Cao H, Smart MK, David CS (1995) Genetic polymorphism of the mouse major histocompatibility complex-associated proteasome subunit Lmp7. Immunogenetics 41:251–254PubMedGoogle Scholar
  278. Zhou N, Glass R, Momburg F, Hammerling GJ, Jondal M, Ljunggren H-G (1993a) TAP2-defective RMA-S cells present Sendai virus antigen to cytotoxic T lymphocytes. Eur J Immunol 23:1796–1801PubMedGoogle Scholar
  279. Zhou P, Cao H, Smart M, Davis C (1993b) Molecular basis of genetic polymorphism in major histocompatibility complex-linked proteasome gene (.Lmp-2). Proc Natl Acad Sci USA 90:2681–2684PubMedGoogle Scholar
  280. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) p2-Microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 344:742–746PubMedGoogle Scholar
  281. Zwickl P, Kleinz J, Baumeister W (1994) Critical elements in proteasome assembly. Nature Struct Biol 1:765–770PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Dipankar Nandi
    • 2
  • Kate Marusina
    • 2
  • John J. Monaco
    • 1
    • 2
  1. 1.Howard Hughes Medical InstituteUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Molecular GeneticsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations