Hemodynamic Management of Gastric Intramucosal Acidosis in Septic Patients

  • E. Silva
  • D. De Backer
  • J.-L. Vincent
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1998)

Abstract

Although sepsis is typically characterized by normal or increased systemic blood flow and decreased oxygen extraction [1], regional hypoperfusion and tissue hypoxia may be present [2]. Systemic parameters currently monitored during resuscitation may not reflect regional blood flow abnormalities and ongoing hypoperfusion in specific organ system beds may lead to subsequent organ failure even when global blood flow is restored or increased [3–5]. A logical approach is to focus on assessment of regional oxygenation. Gastric tonometry is a possible tool to assess gastric perfusion. However, we need to understand better the meaning of a high gastric mucosal carbon dioxide tension (PCO2) or a low gastric intramucosal pH (pHi) to adequately interpret studies assessing hemodynamic management guided by these measurements.

Keywords

Lactate Pancreatitis Epinephrine Catecholamine Lidocaine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schumacker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13: 223–229CrossRefGoogle Scholar
  2. 2.
    Gutierrez G, Bismar H, Dantzker DR, Silva N (1992) Comparison of gastric mucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20: 451–457PubMedCrossRefGoogle Scholar
  3. 3.
    Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265–271PubMedCrossRefGoogle Scholar
  4. 4.
    Dahn MS, Lange MP, Wilson RF, Jacobs LA, Mitchell RA (1990) Hepatic blood flow and splanchnic oxygen consumption measurements in clinical sepsis. Surgery 107: 295–301PubMedGoogle Scholar
  5. 5.
    Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21: 1296–1303PubMedCrossRefGoogle Scholar
  6. 6.
    Clark CH, Gutierrez G (1992) Gastric intramucosal pH: a noninvasive method for the indirect measurement of tissue oxygenation. Am J Crit Care 1: 53–60PubMedGoogle Scholar
  7. 7.
    Schlichtig R, Bowles AS (1994) Distinguishing between aerobic and anaerobic appearance of dissolved C02 in intestine during low flow. J Appl Physiol 76: 572–577Google Scholar
  8. 8.
    Vallet B, Lund N, Curtis SE, et al (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800PubMedGoogle Scholar
  9. 9.
    Salzman AL, Menconi MJ, Unno N, et al (1995) Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BB intestinal epithelial monolayers. Am J Physiol 268: G361–G373Google Scholar
  10. 10.
    Meier-Hellmann A, Bredle DL, Specht M, et al (1997) The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med 23: 31–37PubMedCrossRefGoogle Scholar
  11. 11.
    Pawlik W, Sheperd AD, Jacobson ED (1975) Effects of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J Clin Invest 56: 484–490PubMedCrossRefGoogle Scholar
  12. 12.
    Royblat L, Gelman S, Bradley EL, et al (1990) Dopamine and hepatic oxygen supply-demand relationship. Can J Physiol Pharmacol 68: 1165–1169CrossRefGoogle Scholar
  13. 13.
    Maynard ND, Bihari DJ, Dalton RN, et al (1995) Increasing splanchnic blood flow in the critically ill. Chest 108: 1648–1654PubMedCrossRefGoogle Scholar
  14. 14.
    Marik PE, Mohedin J (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272: 1354–1357PubMedCrossRefGoogle Scholar
  15. 15.
    Nevière R, Mathieu D, Chagnon JL, et al (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154: 1684–1688PubMedGoogle Scholar
  16. 16.
    Olson D, Pohlman A, Hall JB (1996) Administration of low-dose dopamine to nonoliguric patients with sepsis syndrome does not raise gastric intramucosal pH nor improve creatinine clearance. Am J Respir Crit Care Med 154: 1664–1670PubMedGoogle Scholar
  17. 17.
    Lund N,, de Asia RJ, Cladis F et al (1995) Dopexamine hydrochloride in septic shock: effects on oxygen delivery and oxygenation of gut, liver, and muscle. J Trauma 38: 767–775PubMedCrossRefGoogle Scholar
  18. 18.
    Tighe D, Moss R, Heywood G, et al (1995) Goal-directed therapy with dopexamine, dobutamine, and volume expansion: effects of systemic oxygen transport on hepatic ultrastructure in porcine sepsis. Crit Care Med 23: 1997–2007PubMedCrossRefGoogle Scholar
  19. 19.
    Cain SM, Curtis SE (1991) Systemic and regional oxygen uptake and delivery and lactate flux in endotoxic dogs infused with dopexamine. Crit Care Med 19: 1552–1560PubMedCrossRefGoogle Scholar
  20. 20.
    Trinder TJ, Lavery GG, Fee PH, et al (1995) Correction of splanchnic oxygen deficit in the intensive care unit: dopexamine and colloid versus placebo. Anaesth Intens Care 23: 178–182Google Scholar
  21. 21.
    Kuhly P, Oschmann G, Hilpert J, et al (1996) Dopexamine does not change gastric and sigmoid mucosal pH in critically ill patients. Clin Intensive Care 7: 58 (Abst)Google Scholar
  22. 22.
    Smithies M, Yee TH, Jacson L, et al (1994) Protecting the gut and the liver in the critically ill: effects of dopexamine. Crit Care Med 22: 789–795PubMedCrossRefGoogle Scholar
  23. 23.
    Leier CV, Underferth DV (1983) Dobutamine. Ann Intern Med 99: 490–496PubMedGoogle Scholar
  24. 24.
    Fink MP, Kaups KL, Wang H, et al (1991) Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery 110: 154–161PubMedGoogle Scholar
  25. 25.
    De Backer D, Zhang H, Manikis P, et al (1994) Dobutamine can increase mesenteric blood flow during endotoxic shock in dogs. Am Rev Respir Dis 149: A19 (Abst)Google Scholar
  26. 26.
    Nevière R, Chagnon JL, Vallet B, et al (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25: 1371–1377PubMedCrossRefGoogle Scholar
  27. 27.
    Duranteau J, Sitbon P, Teboul JL, et al (1996) Compared effects of epinephrine (E), norepinephrine (NE) and norepinephrine-dobutamine combination (NE -I- Dobu) on the gastric mucosal blood flow in patients with septic shock. Am J Respir Crit Care Med 156: A832 (Abst)Google Scholar
  28. 28.
    Meier-Hellmann A, Reinhart K (1994) Influence of catecholamines on regional perfusion and tissue oxygenation in septic shock patients. In: Reinhart K, Eyrich K, Sprung C (eds) Sepsis. Current perspectives in pathophysiology and therapy. Springer-Verlag, Berlin, Heidelberg, New York, pp 274–291Google Scholar
  29. 29.
    Reinelt H, Radermacher P, Fischer G, et al (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86: 818–824PubMedCrossRefGoogle Scholar
  30. 30.
    De Backer D, Creteur J, Smail N, et al (1996) Dobutamine increases hepatosplanchnic blood flow in septic patients. Am J Respir Crit Care Med 153: A125 (Abst)Google Scholar
  31. 31.
    Ruokonen E, Uusaro A, Alhava E, Takala J (1997) Effect of dobutamine infusion on splanchnic blood flow and oxygen transport in patients with acute pancreatitis. Intensive Care Med 23: 732–737PubMedCrossRefGoogle Scholar
  32. 32.
    Gutierrez G, Clark C, Brown SD, et al (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329PubMedGoogle Scholar
  33. 33.
    Silverman H, Tuma P (1992) Gastric tonometry in patients with sepsis: Effects of dobutamine infusions and packed red blood cell transfusions. Chest 102: 184–188PubMedCrossRefGoogle Scholar
  34. 34.
    Levy B, Bollaert PE, Charpentier C, et al (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock. Intensive Care Med 23: 282–287PubMedCrossRefGoogle Scholar
  35. 35.
    Creteur J, De Backer D, Noordally O, et al (1996) Prognostic value of gastric mucosal PCO2 in septic patients. Intensive Care Med 22 (suppl 2): S310 (Abst)Google Scholar
  36. 36.
    Esen F, Telci L, Qakar N, et al (1996) Evaluation of gastric intramucosal pH measurements with tissue oxygenation indices in patients with severe sepsis. Clin Intensive Care 7: 180–189CrossRefGoogle Scholar
  37. 37.
    Reinelt H, Fischer G, Wiedeck H,et al (1996) Effects of increased regional blood flow on splanchnic metabolism. Intensive Care Med 22 (suppl 1): S75 (Abst)CrossRefGoogle Scholar
  38. 38.
    Bersten AD, Hersch M, Cheung H, et al (1992) The effect of various sympathomimetics on the regional circulations in hyperdynamic sepsis. Surgery 112: 549–561PubMedGoogle Scholar
  39. 39.
    Breslow MJ, Miller CF, Parker SD, et al (1987) Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 252: H291–H300Google Scholar
  40. 40.
    Revelly JP, Liaudet L, Frascarolo P, et al (1997) The effect of norepinephrine on global and mesenteric blood flow during porcine endotoxic shock. Br J Anaesth 78 (suppl 2): A370 (Abst)Google Scholar
  41. 41.
    Zhang H, Smail N, Cabral A, Rogiers P, Vincent JL (1997) Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock. Am J Respir Crit Care Med 155: 1965–1971PubMedGoogle Scholar
  42. 42.
    Meier-Hellmann A, Specht M, Hannemann L, et al (1996) Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Intensive Care Med 22: 1354–1359PubMedCrossRefGoogle Scholar
  43. 43.
    Giraud GD, MacCannell KL (1984) Decreased nutrient blood flow during dopamine and epinephrine induced intestinal vasodilation. J Pharmacol Exp Ther 230: 214–220PubMedGoogle Scholar
  44. 44.
    Kvietys PR, Granger DN (1982) Vasoactive agents and splanchnic oxygen uptake. Am J Physiol 243: G1–G9Google Scholar
  45. 45.
    Granger DN, Richardson PDI, Kvietys PR, et al (1980) Intestinal blood flow. Gastroenterology 78: 837–863PubMedGoogle Scholar
  46. 46.
    Cheung JY, Barrington KJ, Pearson J, et al (1997) Systemic, pulmonary and mesenteric perfusion and oxygenation effects of dopamine and epinephrine. Am J Respir Crit Care Med 155: 32–37PubMedGoogle Scholar
  47. 47.
    Meier-Hellmann A, Hannemann L, Specht M, et al (1994) The relationship between mixed venous and hepatic venous O2 saturation in patients with septic shock. In: Vaupel P (ed) Oxygen transport to the tissues XV. Plenum Press, New York, pp 701–707CrossRefGoogle Scholar
  48. 48.
    Meier-Hellmann A, Reinhart K, Bredle DL, et al (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25: 399–404PubMedCrossRefGoogle Scholar
  49. 49.
    Seelig RF, Kerr JC, Hobson RW, et al (1981) Prostacyclin (epopeostenol) - Its effect on canine splanchnic blood flow during hemorrhagic shock. Arch Surg 116: 428–430PubMedCrossRefGoogle Scholar
  50. 50.
    Rasmussen I, Arvidsson D, Zak A, et al (1992) Splanchnic and total body oxygen consumption in experimental fecal peritonitis in pigs: Effects of dextran and iloprost. Circ Shock 36: 299–306PubMedGoogle Scholar
  51. 51.
    Radermacher P, Buhl R, Klein M, et al (1995) The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intensive Care Med 21: 414–421PubMedCrossRefGoogle Scholar
  52. 52.
    Eichelbrönner O, Reinelt H, Wiedeck H, et al (1996) Aerosolized prostacyclin and inhaled nitric oxide in septic shock - different effects on splanchnic oxygenation? Intensive Care Med 22: 880–887PubMedCrossRefGoogle Scholar
  53. 53.
    Brinkmann A, Wolf CF, Berger D, et al (1996) Perioperative endotoxemia and bacterial translocation during major abdominal surgery: Evidence for the protective effect of endogenous prostacyclin? Crit Care Med 24: 1293–1301PubMedCrossRefGoogle Scholar
  54. 54.
    Ayuse T, Brienza N, Revelly JP, et al (1995) Role of nitric oxide in porcine liver circulation under normal and endotoxemic conditions. J Appl Physiol 78: 1319–1329PubMedGoogle Scholar
  55. 55.
    Boughton-Smith NK, Hucheson IR, Deaking AM (1994) Protective effect of S-nitroso-N-acetyl- penicillamine in endotoxin-induced acute intestinal damage in the rat. Eur J Pharmacol 191: 485–488CrossRefGoogle Scholar
  56. 56.
    Zhang H, Rogiers P, Friedman G, et al (1996) Effects of nitric oxide donor SIN-1 on oxygen availability and regional blood flow during endotoxic shock. Arch Surg 131: 767–774PubMedCrossRefGoogle Scholar
  57. 57.
    Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267: G562–G568Google Scholar
  58. 58.
    Nishida J, McCuskey RS, McDonnell D, et al (1994) Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 267: G1135–G1141Google Scholar
  59. 59.
    Meyer J, Hinder F, Stothert J, et al (1994) Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthesis inhibition. J Appl Physiol 76: 2785–2793PubMedGoogle Scholar
  60. 60.
    Mulder MF, Lambalgen A A, Huisman E, et al (1994) Protective role of NO in the regional hemodynamic changes during acute endotoxemia in rats. Am J Physiol 266:H1558–H 1564Google Scholar
  61. 61.
    Hutcheson IR, Whittle BJR, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 101: 815–820PubMedGoogle Scholar
  62. 62.
    Wright CH, Rees DD, Moncada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26: 48–57PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang H, Rogiers P, Preiser JC, et al (1995) Effects of methylene blue on oxygen availability and regional blood flow during endotoxic shock. Crit Care Med 23: 1711–1721PubMedCrossRefGoogle Scholar
  64. 64.
    Offner PJ, Robertson FM, Pruitt BA (1995) Effects of nitric oxide synthase inhibition on regional blood flow in a porcine model of endotoxic shock. J Trauma 39: 338–343PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang H, Spapen H, Nguyen DN, et al (1995) Effects of N-acetyl-L-cysteine on regional blood flow during endotoxic shock. Eur Surg Res 27: 292–300PubMedCrossRefGoogle Scholar
  66. 66.
    Spies CD, Reinhart K, Witt I, et al (1994) Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: results from a prospective, randomized, double- blind study. Crit Care Med 22: 1738–1746PubMedGoogle Scholar
  67. 67.
    Reinhart K, Spies CD, Meier-Hellmann A, Hannemann L, et al (1995) N-acetylcysteine preserves oxygen consumption and gastric mucosal pH during hyperoxic ventilation. Am J Respir Crit Care Med 151: 773–779PubMedGoogle Scholar
  68. 68.
    Michel C, Sanft C, Schaffartzik W, et al (1997) N-acetylcysteine (NAC) increases liver blood flow in septic patients. Crit Care Med 25 (suppl): A117 (Abst)Google Scholar
  69. 69.
    Uusaro A, Ruokonen E, Takala J (1995) Gastric intramucosal pH does not reflect changes in splanchnic blood flow after cardiac surgery. Br J Anaesth 74: 149–154PubMedCrossRefGoogle Scholar
  70. 70.
    Parviainen I, Ruokonen E, Takala J (1995) Dobutamine induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Br J Anaesth 74: 277–282PubMedCrossRefGoogle Scholar
  71. 71.
    Fink MP (1996) Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med 22: 1144–1146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • E. Silva
  • D. De Backer
  • J.-L. Vincent

There are no affiliations available

Personalised recommendations