Skip to main content

Lungenfunktionsdiagnostik in der Pneumologischen Umweltmedizin

  • Chapter
Pneumologische Umweltmedizin
  • 102 Accesses

Zusammenfassung

Das Methodenrepertoire der Lungenfunktionsdiagnostik ist aus der Umweltmedizin aus mehreren Gründen nicht wegzudenken und betrifft:

  • Diagnostik,

  • Prävention und Früherkennung,

  • Therapie-und Verlaufskontrolle,

  • Begutachtung,

  • Forschung.

Jeder umweltmedizinisch tätige Arzt muß daher zumindest die Grundmethoden der Lungenfunktionsdiagnostik kennen und die Grundzüge der Befundinterpretation beherrschen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. McCarthy DS, Spencer R, Greene R, Millic-Emili J (1972) Measurement of „closing volume“ as a simple and sensitive test of early detection of small airway disease. Amer J Med 52, 747–753

    Article  PubMed  CAS  Google Scholar 

  2. Buist AS, Vollmer WM, Iohnson LR, McCamant LE (1988) Does the single breath N2 test identify the smoker who will develop chronic airflow limitation? Amer Rev Respir Dis 137: 293–301

    CAS  Google Scholar 

  3. Dockery DW, Brunekreef B (1996) Longitudinal studies of air pollution effects on lung function. Am J Respir Crit Care Med, 154 (Suppl. Number 6,Part 2) 250–256

    Google Scholar 

  4. Quanjer PH (Hrsg) (1983) Europäische Gem. f. Kohle und Stahl: Standardized lung function testing. Report Working Party„Standardization of lung function tests“. Bull Europ Physiopath Resp/Clin Respir Physiol 19(Suppl. 5): 1–95

    Google Scholar 

  5. Zapletal A, Samanek M, Paul T (1987) Lung function in children and adolescents. Methods, Reference values. Progress in Respiration (Hrsg: Herzog H) 22: Basel (Karger)

    Google Scholar 

  6. Lebowitz MD, Kundson RJ, Robertson G, Burrows B (1982) Significance of intraindividual changes in maximum expiratory flow volume and peak expiratory flow measurements. Chest 81:566–570

    Article  PubMed  CAS  Google Scholar 

  7. Pedersen OF, Rasmussen TR, Omland 0, Sigsgaard T, Quanjer PhH, Miller MR (1996) Peak Expiratory flow and the resistance of the mini-Wright peak flow meter. Eur Respir J 9: 828–833

    Article  PubMed  CAS  Google Scholar 

  8. Quackenboss JJ, Lebowitz MD, Krzyzanowiski M (1991) The normal range of diurnal changes in peak expiratory flow rates. Am Rev Respir Dis 143: 323 - 330

    PubMed  CAS  Google Scholar 

  9. Lahdensuo A, Haahtela T, Herrala J, Kava T, Kiviranta K, Kuusisto P, Peramaki E, Poussa T, Saarelainen S, Svahn T (1996) Randomized comparison of guided self management and traditional treatment of asthma over one year. BMJ 312 (7033): 748 -752

    Article  CAS  Google Scholar 

  10. Moscato G, Godnic-Cvar J, Maestrelli P (1995) Statement on self-monitoring of peak expiratory flows in the investigation of occupational asthma. J Allergy Clin Immunol 96, 3:295–301

    Article  PubMed  CAS  Google Scholar 

  11. Gannon PFG, Burge PS (1997) Serial peak expiratory flow measurement in the diagnosis of occupational asthma Eur Respir J; 10: Suppl. 24, 57 s - 63 s.

    CAS  Google Scholar 

  12. Neas LM, Dockery DW, Koutrakis P, Tollerud DJ, Speizer FE (1995) The association of ambient air pollution with twice daily peak expiratory flow rate measurements in children. Am I Epidemiol Vol. 141, No.2, 111–122

    CAS  Google Scholar 

  13. Neas LM, Dockery DW, Burge H, Koutrakis P, Speizer FE (1996) Fungus spores, air pollutants, and other determinants of expiratory flow rate in children. Am I Epidemiology 143(8): 797–807

    CAS  Google Scholar 

  14. Nunn AJ, Grgg I (1989) New regression equations for predicting peak expiratory flow in adults. Br Med J 298: 1068–1070

    Article  CAS  Google Scholar 

  15. Quanjer PH, Lebowitz MD, Gregg I, Miller MR, Pedersen OF (1997) Peak expiratory flow: conclusions and recommendations of a working party of the European Respiratory Society. Eur Respir J 10:Suppl. 24,2s-8s

    CAS  Google Scholar 

  16. Wettengel R et al. (1994) Empfehlungen der Deutschen Atemwegsliga zum Asthmamanagement bei Erwachsenen und bei Kinder. Med Klin 89: 57 - 67

    CAS  Google Scholar 

  17. Lebowitz MD, Krzyzanowski M, Quackenboss JJ (1997) Diurnal variation of PEF and it’s usage in epidemiological studies. Eur Respir J, 10: Suppl. 24, 49s - 56s.

    CAS  Google Scholar 

  18. Kernan S, Willemse B, Wesseling GJ, Kusters E, Borm PJA (1996) A five year follow-up of lung function among chemical workers using flow-volume and impedance measurements. Eur Respir J 9:2109–2115

    Article  Google Scholar 

  19. Orie NGM (1977) Die „Holländische Hypothese“ als umfassendes Konzept für die chronisch obstruktiven Atemwegserkrankungen. Atemw-Lungenkrkh 22: 56 - 66

    Google Scholar 

  20. Taggart SCO, Custovic A, Francis HC, Faragher EB, Yates CJ, Higgins BC, Woodcock A (1996) Asthmatic bronchial hyperresponsiveness varies with ambient levels of summertime air pollution, Eur Respir J 9: 1146–1154

    Article  PubMed  CAS  Google Scholar 

  21. Tam AYC, Wong CM, Lam TH, Ong SG, Peters J, Iohnson A (1994) Bronchial responsiveness in children exposed to atmospheric pollution in Hong Kong, Chest 106: 1056–1060

    Article  PubMed  CAS  Google Scholar 

  22. Strand V, Salomonsson P, Lundahl J, Bylin G (1996) Immediate and delayed effects of nitrogen dioxide exposure at an ambient level on bronchial responsiveness to histamine in subjects with asthma, Eur Respir J 9: 733 -740

    CAS  Google Scholar 

  23. Mohsenin V (1988) Airway response to 2.0 ppm nitrogen dioxide in normal subjects. Arch Environ Health 43: 242 - 246

    Article  PubMed  CAS  Google Scholar 

  24. Søseth V, Kongerud J, Haarr Dagfin, Strand, Ole, Bolle R, Boe I (1995) Relation of exposure to airway irritants in infancy to prevalence of bronchial hyper-responsiveness in schoolchildren. Lancet 345: 217 - 220

    Article  Google Scholar 

  25. Massin N, Bohadana AB, Wild P, Goutet P, Kirstetter H, Toamain IP (1996) Airway responsiveness, respiratory symptoms, and exposures to soluble oil mist in mechanical workers. Occup Environ Med 53(11):748–752

    Article  PubMed  CAS  Google Scholar 

  26. Klein G, Matthys H (1986) Bronchiale Hyperreagibilität. Pneumol40: 156 -166

    Google Scholar 

  27. Klein G (l996) Bedeutung und Standardisierung verschiedener bronchialer Provikationstests. Atemw-Lungenkrkh 22 (Nr. 3), 151–156

    Google Scholar 

  28. Herrmann, H (1983) Bronchiale Hyperreaktivität und Krankheitsrisiko. Ergebnisse einer epidemiologischen Longitudinalstudie. Prax Klin Pneumo139:670–675

    Google Scholar 

  29. Nolte D (1995) Asthma, 6. Auflage, Urban u.Schwarzenberg

    Google Scholar 

  30. Nikolai T, Mutius EV, Reitmeir P, Wjst M (l993) Reactivity to cold-air hyperventilation in normal and in asthmatic children in a survey of 5697 schoolchildren in south bavaria. Am Rev Respir Dis Vol 147, 565–572

    Google Scholar 

  31. Islam MS (l996) Atemwegshyperreagibilität der Grundschulkinder. Atemw-Lungenkrkh 22,9,469–475

    Google Scholar 

  32. Haby MM, Anderson SD, Peat JK, Mellis CM, Toelle BG, Woolcock AJ (l994) An exercise challenge protocol for epidemiological studies of asthma in children: comparison with histamine challenge. Eur Respir J 7:43–49

    Article  PubMed  CAS  Google Scholar 

  33. Haber H, Raber W, Kapfhammer G, Studnicka M, Vetter N: Kaltluft versus Methacholin. Atemw-Lungenkrkh,21,Nr.l0/1995,525–529

    Google Scholar 

  34. Quanjer PhH, Tammerling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault J-C (l993) Lung volumes and forced ventilatory flows. Eur Respir J 6, Suppl.16:5–40

    CAS  Google Scholar 

  35. Dekker FW, Schrier AC, Sterk PJ, Dijkman JH (l992) Validity of peak expiratory flow measurement in assessing reversibility of airflow obstruction. Thorax 47: 162 -166

    Article  Google Scholar 

  36. Ulmer WT, Vollmer M, Schmidt EW, Schultze-Werninghaus G (1997) Lungenfunktionsanalytische individuelle Korrelationen bei Patienten mit obstruktiver Atemwegserkrankung. Atemw-Lungenkrkh 23: 3 - 9

    Google Scholar 

  37. Genger K, Forche G, Harnoncourt K (1986) Blutgase und Säure-Basen-Haushalt in Abhängigkeit von in-vitro-Stoffwechselvorgängen. Wien Med Wschr 136 Suppl. 97, 35

    Google Scholar 

  38. Haber P, Harnocourt K, Feldner H, Forche G (1988) Österreichische Standardisierung der Blutgasanalyse. Öst. Ärzteztg. 43/18: 32 -46

    Google Scholar 

  39. Baur X (1996) Kongreßbericht: Workshop der AG „Lungenfunktionssollwerte und Expertensystem“ in der Gesellschaft für Lungen- und Atmungsforschung. Arbeitsmed. Sozialmed. Umweltmed. 31, 9, 280 - 281

    Google Scholar 

  40. Künzli N, Ackermann-Liebrich U, Keller R, Perruchoud AP, Schindler C (l995) SAPALDIA team: Variability of FVC and FEVI due to technician, team, device and subject in an eight center study: Three quality control studies in SAPALDIA. Eur Respir J 8: 371–376

    Article  Google Scholar 

  41. ATS-ERS Workshop on Longitudinal Analysis of Lung Function. Am J Respir Crit Care Med Vol 154, 6, Part 2

    Google Scholar 

  42. Barnes PJ, Khaitonov SA (1996) Exhaled nitric oxide: a new lung function test. Thorax 51: 233–237

    Article  PubMed  CAS  Google Scholar 

  43. Balmes JR, Chen LL, Scannell C, Tager I, Christian D, Hearne PQ, Kelly T, Aris RM (1996) Ozone - induced decrements in FEVI and FVC do not correlate with measures of inflammation, Am J Respir Crit Care Med 153:904–909

    PubMed  CAS  Google Scholar 

  44. Konietzko et al. (l995) Erkrankungen der Lunge. W. de Gruyter, Berlin, New York

    Google Scholar 

  45. Ferlinz R (Hrsg) (l992) Diagnostik in der Pneumologie. Thieme, Stuttgart, New York

    Google Scholar 

Weiterführende Literatur

  • Petro W, Konietzko N (1989) Atlas der Lungenfunktionsdiagnostik, Steinkopff, Darmstadt

    Google Scholar 

  • Petro W, Konietzko N (1992) Lungenfunktionsdiagnostik. In: R. Ferlinz (Hrsg) Diagnostik in der Pneumologie, Georg Thieme Verlag, Stuttgart - New York

    Google Scholar 

  • Schmidt W (1990) Angewandte Lungenfunktionsprüfung, Dustri Verlag, München - Deisenhofen

    Google Scholar 

  • Ulmer WT, Reichel G, Nolte D, Islam MS (1991) Die Lungenfunktion, Thieme Verlag, Stuttgart

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultz, K., Petro, W. (1998). Lungenfunktionsdiagnostik in der Pneumologischen Umweltmedizin. In: Schultz, K., Petro, W. (eds) Pneumologische Umweltmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72021-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72021-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72022-2

  • Online ISBN: 978-3-642-72021-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics