Skip to main content

Propagation of the GPS Signals

  • Chapter

Abstract

The Global Positioning System is a one-way ranging system. The GPS satellites emit signals — complex modulated radio waves — which propagate through space to receivers on or near the earth’s surface.1 From the signals it intercepts, a receiver measures the ranges between its antenna and the satellites. In this chapter, we will examine the nature of the GPS signals. After a brief review of the fundamentals of electromagnetic radiation, we will describe the structure of the GPS signals. Since the signals, in propagating to a receiver, must travel through the ionosphere and the neutral atmosphere, we will examine the effect these media have on the signals. Finally, we will look at the propagation phenomena of multipath and scattering and the effects they have on the measurements made by a GPS receiver.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGU (1994), 1994 Fall Meeting. EOS, Transactions of the American Geophysical Union, Vol. 75, No. 44, Supplement.

    Google Scholar 

  • ARINC (1991), Interface Control Document. Navstar GPS Space Segment / Navigation User Interfaces, ICD-GPS-200, ARINC Research Corp., Fountain Valley, CA, 3 July, 115 pp.

    Google Scholar 

  • Ashjaee, J. and R. Lorenz (1992), “Precision GPS Surveying after Y-code. “Proceedings of IONGPS-92, the Fifth International Technical Meeting of the Satellite Division of The Institute of Navigation, Albuquerque, NM, 16–18 September, pp. 657–659.

    Google Scholar 

  • Austen, J.R., S.J. Franke, and C.H. Liu (1987), “Ionospheric imaging using computerized tomography.” In The Effect of the Ionosphere on Communication, Navigation, and Surveillance Systems, Proceedings of the 5th Ionospheric Effects Symposium, Springfield, VA, 5–7 May, pp. 101–106.

    Google Scholar 

  • Baby, H. B., P. Golé, and J. Lavergnat (1988), “A model for the tropospheric excess path length of radio waves from surface meteorological measurements.” Radio Science, November-December, Vol. 23, No. 6, pp. 1023–1038.

    Google Scholar 

  • Bent, R.B. and S.K. Llewellyn (1973), Documentation and Description of the Bent IonosphericModel. Space and Missiles Organization, Los Angles, CA. AFCRL-TR-73-0657.

    Google Scholar 

  • Beutler, G., I. Bauersima, W. Gurtner, M. Rothacher, T. Schildknecht, and A. Geiger (1988), “Atmospheric refraction and other important biases in GPS carrier phase observations.” In Atmospheric Effects on Geodetic Space Measurements, Monograph 12, School of Surveying, University of New South Wales, Kensington, N.S.W., Australia, pp. 15–43.

    Google Scholar 

  • Beutler, G., W. Gurtner, M. Rothacher, U. Wild, and E. Frei (1990), “Relative static positioning with the Global Positioning System: Basic technical considerations.” In Global Positioning System: An Overview, proceedings of International Association of Geodesy, Symposium No. 102, Edinburgh, Scotland,7–8 August, 1991, Springer-Verlag, New York; pp. 1–23.

    Google Scholar 

  • Bilitza, D. (1990), Solar-terrestrial Models and Application Software. NSSDC/WDC-A-R&S 90–19, National Space Science Data Center/World Data Center A for Rockets and Satellites, Goddard Space Flight Center, Greenbelt, MD, July, 98 pp.

    Google Scholar 

  • Bishop, G.J., J.A. Klobuchar, and P.H. Doherty (1985). “Multipath effects on the determination of absolute ionospheric time delay from GPS signals.” Radio Science, Vol. 20, No. 3, pp. 388–396.

    Article  Google Scholar 

  • Black, H. D. (1978). “An easily implemented algorithm for the tropospheric range correction.” Journal of Geophysical Research, 10. April, Vol. 83, No. B4, pp. 1825–1828.

    Article  Google Scholar 

  • Black, H. D., and A. Eisner (1984). “Correcting satellite Doppler data for tropospheric effects.” Journal of Geophysical Research, 20. April, Vol. 89, No. D2, pp. 2616–2626.

    Article  Google Scholar 

  • Bradley, P.A. (1989). “Propagation of radiowaves in the ionosphere.” In RadiowavePropagation, Eds. M.P.M. Hall and L.W. Barclay, Peter Peregrinus Ltd. (on behalf of the Institution of Electrical Engineers), London, England, U.K.

    Google Scholar 

  • Brown, L.D., R.E. Daniell, Jr., M.W. Fox, J.A. Klobuchar, and P.H. Doherty (1991). “Evaluation of six ionospheric models as predictors of total electron content.” RadioScience, Vol. 26, No. 4, pp. 1007–1015.

    Google Scholar 

  • Brunner, F.K. (ed.) (1988). Atmospheric Effects on Geodetic Space Measurements. Monograph12, School of Surveying, University of New South Wales, Kensington, N.S.W., Australia, 110 pp.

    Google Scholar 

  • Brunner, F.K. (1991). “Wave propagation in refractive media: A progress report.” Report ofInternational Association of Geodesy Special Study Group 4.93 (1987 -1991).

    Google Scholar 

  • Brunner, F.K. and M. Gu (1991). “An improved model for the dual frequency ionospheric correction of GPS observations.” Manuscripta Geodaetica, Vol. 16, pp. 205–214.

    Google Scholar 

  • Brunner, F.K. and W.M. Welsch (1993). “Effect of the troposphere on GPS measurements.” GPS World, Vol. 4, No. 1, pp. 42–51.

    Google Scholar 

  • Chao, C. C. (1972). A model for tropospheric calibration from daily surface and radiosonde balloon measurement. Jet Propulsion Laboratory, Pasadena, Calif., 8. August, TechnicalMemorandum 391–350, 16 pp.

    Google Scholar 

  • Clynch, J.R., D.S. Coco, and C.E. Coker (1989). “A versatile GPS ionospheric monitor: High latitude measurements of TEC and scintillation.” In Proceedings of the Institute ofNavigation Satellite Division Conference, Colorado Springs, CO, pp. 445–450.

    Google Scholar 

  • Coco, D. (1991). “GPS -Satellites of opportunity for ionospheric monitoring.” GPS World,Vol. 2, No. 9, pp. 47–50.

    Google Scholar 

  • Davis, J.L. (1986). Atmospheric Propagation Effects on Radio Interferometry. Ph.D. Dissertation. Air Force Geophysics Laboratory Technical Report AFGL-TR-86-0243,Hanscom AFB, MA, 276 pp.

    Google Scholar 

  • Davis, J.L., T.A. Herring, and I.I. Shapiro (1991). “Effects of atmospheric modeling errors on determinations of baseline vectors from very long baseline interferometry.” Journal ofGeophysical Research, Vol. 96, pp. 643–650.

    Article  Google Scholar 

  • Davis, J. L., T. A. Herring, I.I. Shapiro, A. E. E. Rogers, and G. Elgered (1985). “Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length.” Radio Science, November-December, Vol. 20, No. 6, pp. 1593–1607.

    Google Scholar 

  • de Mendonca, F. (1963), “Ionospheric electron content and variations measured by Doppler shifts in satellite transmissions.” Journal of Geophysical Research, Vol. 67, No. 6, pp. 2315– 2337.

    Article  Google Scholar 

  • de Munck, J.C. and T.A.Th. Spoelstra (eds.) (1992), Proceedings of the Symposium onRefraction of Transatmospheric Signals in Geodesy, The Hague, The Netherlands, 19–22 May, Netherlands Geodetic Commission, Publications on Geodesy, Delft, The Netherlands, No. 36, New Series.

    Google Scholar 

  • Elgered, G., J.L. Davis, T.A. Herring, and I.I. Shapiro (1991), “Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay.” Journal ofGeophysical Research, Vol. 96, pp. 6541–6555.

    Article  Google Scholar 

  • Elósegui, P., J.L. Davis, R.T.K. Jaldehag, J.M. Johansson, A.E. Niell, and I.I. Shapiro (1994), “Effects of signal scattering on GPS estimates of the atmospheric propagation delay.” Presented at the 1994 Fall Meeting of the American Geophysical Union, San Francisco, CA, 5–9 December. Abstract: EOS, Vol. 75, No. 44, Supplement, p. 173.

    Google Scholar 

  • Environmental Science Services Administration, National Aeronautics and Space Administration, and United States Air Force (1966), U.S. Standard AtmosphereSupplements, 1966. U.S. Government Printing Office, Washington, D.C., 290 pp.

    Google Scholar 

  • Estefan, J.A. and O.J. Sovers (1994), A Comparative Survey of Current and Proposed Tropospheric Refraction-delay Models for DSN Radio Metric Data Calibration. JPLPublication 94-24, Jet Propulsion Laboratory, Pasadena, CA, October, 53 pp.

    Google Scholar 

  • Evans, A.G. and B.R. Hermann (1990), “A comparison of several techniques to reduce signal multipath from the Global Positioning System” In: Eds. Y. Bock and N. Leppard, Global Positioning System: An Overview; Proceedings of International Association of GeodesySymposium No. 102;7–8 August 1989; Edinburgh, Scotland; New York, Berlin; Springer-Verlag; 1990; pp. 74–81.

    Google Scholar 

  • Feess, W.A. and S.G. Stephens (1986), “Evaluation of GPS ionospheric time delay algorithm for single-frequency users.” Proceedings of the PLANS-86 conference, Las Vegas, NV, pp. 280–286.

    Google Scholar 

  • Feynman, R.P., R.B. Leighton, and M. Sands (1964), The Feynman Lectures on Physics, Vol. II-Mainly Electromagnetism and Matter. Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  • General Dynamics (1979), “Final user field test report for the NAVSTAR global positioning system phase I, major field test objective no. 17: Environmental effects, multipath rejection.” Rep. GPS-GD-025-C-US-7008, sect. II, pp. 1–7. Electronics Division, General Dynamics, San Diego, California, 28 March.

    Google Scholar 

  • Georgiadou, Y. and A. Kleusberg (1988), “On the effect of ionospheric delay on geodetic relative GPS positioning.” Manuscripta Geodaetica , Vol. 13, pp. 1–8.

    Google Scholar 

  • Goad, C.C. and L. Goodman (1974), “A modified Hopfield tropospheric correction model.” Presented at the American Geophysical Union Fall Annual Meeting, San Francisco, CA, 12–17 December, 28 pp.

    Google Scholar 

  • Héroux, P. and A. Kleusberg (1989), “GPS precise relative positioning and the ionosphere in auroral regions.” Proceedings of the 5th International Geodetic Symposium on SatellitePositioning, Las Cruces, NM, pp. 475–486.

    Google Scholar 

  • Herring, T.A. (1992), “Modeling atmospheric delays in the analysis of space geodetic data.” Proceedings of the Symposium on Refraction of Transatmospheric Signals in Geodesy, Eds. J. C. de Munck, T. A. Th. Spoelstra, The Hague, The Netherlands, 19-22 May, NetherlandsGeodetic Commission, Publications on Geodesy, Delft, The Netherlands, No. 36, New Series, pp. 157–164.

    Google Scholar 

  • Hopfield, H. S. (1969), “Two-quartic tropospheric refractivity profile for correcting satellite data.” Journal of Geophysical Research, 20. August, Vol. 74, No. 18, pp. 4487–4499.

    Article  Google Scholar 

  • Ifadis, I.I. (1986), The Atmospheric Delay of Radio Waves: Modelling the Elevation Dependence on a Global Scale. Technical Report #38L, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Janes, H.W., R.B. Langley, and S.P. Newby (1989), “A comparison of several models for the prediction of tropospheric propagation delay.” Proceedings of the 5th InternationalGeodetic Symposium on Satellite Positioning, Las Cruces, NM, pp. 777–788.

    Google Scholar 

  • Janes, H.W., R.B. Langley, and S.P. Newby (1991), “Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning.” Bulletin Géodésique, Vol. 65, pp. 151–161.

    Article  Google Scholar 

  • Jursa, A.S., Ed. (1985), “Ionospheric Radio Wave Propagation.” Chapter 10 of Handbook ofGeophysics and the Space Environment. Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force. Available as Document ADA 167000 from the National Technical Information Service, Springfield, VA, U.S.A.

    Google Scholar 

  • Klobuchar, J.A. (1986), “Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users.” Proceedings of the PLANS-86 conference, Las Vegas, NV, pp. 280–286.

    Google Scholar 

  • Klobuchar, J.A. (1991), “Ionospheric effects on GPS.” GPS World, Vol. 2, No. 4, pp. 48–51.

    Google Scholar 

  • Kraus, J.D. (1950), Antennas. McGraw-Hill Book Company, New York.

    Google Scholar 

  • Kuehn, C.E., W.E. Himwich, T.A. Clark, and C. Ma (1991), “An evaluation of water vapor radiometer data for calibration of the wet path delay in very long baseline interferometry experiments.” Radio Science, Vol. 26, No. 6, pp. 1381–1391.

    Article  Google Scholar 

  • Kuehn, C.E., G. Elgered, J.M. Johansson, T.A. Clark, and B.O. Rönnäng (1993), “A microwave radiometer comparison and its implication for the accuracy of wet delays.” Contributions ofSpace Geodesy to Geodynamics: Technology, Eds. D.E. Smith and D.L. Turcotte, American Geophysical Union Geodynamics Series, Vol. 25, pp. 99–114.

    Chapter  Google Scholar 

  • Kursinski, R. (1994), “Monitoring the earth’s atmosphere with GPS.” GPS World, Vol. 5, No. 3, pp. 50–54.

    Google Scholar 

  • Langley, R.B. (1990), “Why is the GPS signal so complex?” GPS World, Vol. 1, No. 3, pp. 56– 59.

    Google Scholar 

  • Langley, R.B. (1992), “The effect of the ionosphere and troposphere on satellite positioning systems.” Proceedings of the Symposium on Refraction of Transatmospheric Signals inGeodesy. Eds. J. C. de Munck, T. A. Th. Spoelstra, The Hague, The Netherlands, 19-22 May, Netherlands Geodetic Commission, Publications on Geodesy, Delft, The Netherlands, No. 36, New Series, p. 97 (abstract only).

    Google Scholar 

  • Langley, R.B., Wells, W. and Mendes, V.B. (1995), Tropospheric Propagation Delay: A Bibliography. 2nd edition. March (unpublished).

    Google Scholar 

  • Lanyi, G. (1984), “Tropospheric delay affecting radio interferometry.” Jet Propulsion Laboratory, Pasadena, CA, TDA Progress Report 42-78, April-June, pp. 152–159.

    Google Scholar 

  • Lanyi, G.E. and T. Roth (1988), “A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations.” RadioScience, Vol. 23, pp. 483–492.

    Google Scholar 

  • Leitinger, R. and E. Putz (1988), “Ionospheric refraction errors and observables.” In Atmospheric Effects on Geodetic Space Measurements, Monograph 12, School of Surveying, University of New South Wales, Kensington, N.S.W., Australia, pp. 81–102.

    Google Scholar 

  • Leitinger, R., G. Schmidt, and A. Tauriainen (1975), “An evaluation method combining the differential Doppler measurements from two stations that enables the calculation of the electron content of the ionosphere.” Journal of Geophysics, Vol. 41, pp. 201–213.

    Google Scholar 

  • Leitinger, R., G.K. Hartmann, F.J. Lohmar, and E. Putz (1984), “Electron content measurements with geodetic Doppler receivers.” Radio Science, Vol. 19, pp. 789–797.

    Article  Google Scholar 

  • Lindqwister, U. J., J. F. Zumberge, G. Blewitt, and F. Webb (1990), “Application of stochastic troposphere modeling to the California permanent GPS geodetic array.” Presented at the American Geophysical Union Fall Meeting, San Francisco, CA, 6 December, 14 pp.

    Google Scholar 

  • Lorrain, P. and D.R. Corson (1970), Electromagnetic Fields and Waves. 2nd. edition. W.H. Freeman and Company, San Francisco, CA, 706 pp.

    Google Scholar 

  • Lutgens, F.K. and E.J. Tarbuck (1989), The Atmosphere: An Introduction to Meteorology. 4thedition. Prentice Hall, Englewood Cliffs, NJ, 491 pp.

    Google Scholar 

  • Marini, J.W. (1972), “Correction of satellite tracking data for an arbitrary atmospheric profile.” Radio Science, Vol. 7, No. 2, pp. 223–231.

    Article  Google Scholar 

  • Marini, J.W. and C.W. Murray (1973), Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations above 10 Degrees. Goddard Space Flight Center ReportX-591-73-351, NASA GSFC, Greenbelt, MD.

    Google Scholar 

  • Martin, E.H. (1978, 1980), “GPS user equipment error models.” Navigation, Journal of the(U.S.) Institute of Navigation, Vol. 25, No. 2, pp. 201–210

    Google Scholar 

  • reprinted in Global Positioning System -Papers Published in Navigation (Vol. I of “The Red Books”), Institute of Navigation, Alexandria, VA, pp. 109–118.

    Google Scholar 

  • Melbourne, W.G. (1989), “The Global Positioning System for study of the ionosphere: An overview” Presented at the 1989 Fall Meeting of the American Geophysical Union, San Francisco, CA, 4–8 December. Abstract: EOS, Vol. 70, No. 43, p. 1048.

    Google Scholar 

  • Mendes, V.B. and R.B. Langley (1994), “A comprehensive analysis of mapping functions used in modeling tropospheric propagation delay in space geodetic data.” KIS94, Proceedings ofthe International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation,Banff, Alberta, 30 August -2 September, The University of Calgary, Calgary, Alberta, Canada, pp. 87–98.

    Google Scholar 

  • Moffett, J.B. (1973), Program requirements for two-minute integrated Doppler satellite navigation solution. Technical Memorandum TG 819-1, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD. Monaldo, F. (1991), “Ionospheric variability and the measurement of ocean mesoscale circulation with a spaceborne radar altimeter.” Journal of Geophysical Research, Vol. 96, pp. 4925–4937.

    Google Scholar 

  • Laurel, MD. Monaldo, F. (1991), “Ionospheric variability and the measurement of ocean mesoscale circulation with a spaceborne radar altimeter.” Journal of Geophysical Research, Vol. 96, pp. 4925–4937.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and United States Air Force (1976), U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, D.C., NOAA-S/T 76-1562, 227 pp.

    Google Scholar 

  • Newby, S.P. and R.B. Langley (1992), “Three alternative empirical ionospheric models --Are they better than the GPS Broadcast Model?” Proceedings of the 6th International GeodeticSymposium on Satellite Positioning, Columbus, OH, 17–20 March, pp. 240–244.

    Google Scholar 

  • Niell, A. E. (1993), “A new approach for the hydrostatic mapping function.” Proceedings of theInternational Workshop for Reference Frame Establishment and Technical Development inSpace Geodesy, Communications Research Laboratory, Koganei, Tokyo, Japan, 18–21 January, pp. 61–68.

    Google Scholar 

  • Niell, A.E. (1995), “Global mapping functions for the atmospheric delay at radio wavelengths.” VLBI Geodetic Technical Memo No. 13, Haystack Observatory, Massachussetts Institute of Technology, Westford, MA. Submitted to Journal of Geophysical Research.

    Google Scholar 

  • Nieuwejaar, P.W. (1988), “GPS signal structure.” The NAVSTAR GPS System, AGARDLecture Series No. 161, Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Neuilly sur Seine, France.

    Google Scholar 

  • Owens, J.C. (1967), “Optical refractive index of air: Dependence on pressure, temperature and composition.” Applied Optics, Vol. 6, No. 1, pp. 51–59.

    Article  Google Scholar 

  • Rahnemoon, M. (1988), Ein neues Korrekturmodell fur Mikrowellen -Entfernungsmessungen zu Satelliten. Dr. -Ing. dissertation Bayerischen Akademie der Wissenschaften, DeutscheGeodätische Kommission, Munich, F. R. G., 188 pp.

    Google Scholar 

  • Rawer, K., J.V. Lincoln, R.O. Conkright, D. Bilitza, B.S.N. Prasad, S. Mohanty, and F. Arnold (1981), International Reference Ionosphere. World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO. Report UAG-82.

    Google Scholar 

  • Rocken, C, J.M. Johnson, R.E. Nielan, M. Cerezo, J.R. Jordan, M.J. Falls, L.D. Nelson, R.H. Ware, and M. Hayes (1991), “The measurement of atmospheric water vapor: Radiometer comparison and spatial variations.” IEEE Transactions on Geoscience and Remote Sensing,GE-29, p. 3–8.

    Google Scholar 

  • Roddy, D. and J. Coolen (1984), Electronic Communications. 3rd edition. Reston Publishing Company, Inc., Reston, VA.

    Google Scholar 

  • Saastamoinen, J. (1973), “Contributions to the theory of atmospheric refraction.” In three parts. Bulletin Géodésique, No. 105, pp. 279–298; No. 106, pp. 383–397; No. 107, pp. 13–34.

    Google Scholar 

  • Santerre, R. (1987), Tropospheric refraction effects in GPS positioning. SE 6910 graduateseminar Department of Surveying Engineering, University of New Brunswick, Fredericton, N. B., December, 22 pp.

    Google Scholar 

  • Santerre, R. (1989), GPS Satellite Sky Distribution: Impact of the Propagation of Some Important Errors in Precise Relative Positioning. Ph.D. Dissertation. Department of Surveying Engineering Technical Report No. 145, University of New Brunswick, Fredericton, N.B., Canada, 204 pp.

    Google Scholar 

  • Santerre, R. (1991), “Impact of GPS satellite sky distribution.” Manuscripta Geodaetica, Vol. 16, pp. 28–53.

    Google Scholar 

  • Seeber, Günter (1993), Satellite Geodesy: Foundations, Methods, and Applications. Walter de Gruyter, Berlin and New York. 531 pp.

    Google Scholar 

  • Smith, E.K. and S. Weintraub (1953), “The constants in the equation of atmospheric refractive index at radio frequencies.” Proceedings of the Institute of Radio Engineers, Vol. 41, No. 8, pp. 1035–1037.

    Google Scholar 

  • Spilker, J.J., Jr. (1978, 1980), “GPS Signal Structure and Performance Characteristics.” Navigation, Journal of the (U.S.) Institute of Navigation, Vol. 25, No. 2, pp. 121–146 and reprinted in Global Positioning System -Papers Published in Navigation (Vol. I of “The Red Books”), Institute of Navigation, Alexandria, VA, pp. 29–54.

    Google Scholar 

  • Tascoine, T.F., H.W. Kroehl, R. Creiger, J.W. Freeman, R.A. Wolf, R.W. Spiro, R.V. Hilmer, J.W. Shade, and B.A. Hausman (1988), “New ionospheric and magnetospheric specification models.” Radio Science, Vol. 23, No. 3, pp. 211–222.

    Article  Google Scholar 

  • Thayer, G.D. (1974), “An improved equation for the radio refractive index of air.” RadioScience, Vol. 9, No. 10, pp. 803–807.

    Google Scholar 

  • Tralli, D.M., T.H. Dixon, and S.A. Stephens (1988), “Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System.” Journal of Geophysical Research, Vol. 93, pp. 6545–6557.

    Article  Google Scholar 

  • Tralli, D.M. and S.M. Lichten (1990), “Stochastic estimation of tropospheric path delays in Global Positioning System geodetic measurements.” Bulletin Géodésique, Vol. 64, pp. 127– 159.

    Article  Google Scholar 

  • Van Dierendonck, A.J., S.S. Russell, E.R. Kopitzke, and M. Birnbaum (1978, 1980), “The GPS Navigation Message.” Navigation, Journal of the (U.S.) Institute of Navigation, Vol. 25, No. 2, pp. 147–165 and reprinted in Global Positioning System -Papers Published in Navigation (Vol. I of “The Red Books”), Institute of Navigation, Alexandria, VA, pp. 55–73.

    Google Scholar 

  • Wanninger, L. (1993), “Effects of the equatorial ionosphere on GPS.” GPS World, Vol. 4, No. 7, pp. 48–54.

    Google Scholar 

  • Webster, I. and A. Kleusberg (1992), “Regional modelling of the ionosphere for single frequency users of the Global Positioning System.” Proceedings of the 6th InternationalGeodetic Symposium on Satellite Positioning, Columbus, OH, 17–20 March, pp. 230–239.

    Google Scholar 

  • Wild, U. (1994), Ionosphere and Geodetic Satellite Systems: Permanent GPS Tracking Data for Modelling and Monitoring. Ph.D. Thesis, Astronomical Institute, University of Bern. Geodätisch-geophysikalische Arbeiten in der Schweiz, Bern, Switzerland, Vol. 48, 155 pp.

    Google Scholar 

  • Wild, U., G. Beutler, W. Gurtner, and M. Rothacher (1989), “Estimating the ionosphere using one or more dual frequency GPS receivers.” Proceedings of the 5th International GeodeticSymposium on Satellite Positioning, Las Cruces, NM, pp. 724–736.

    Google Scholar 

  • Yionoulis, S. M. (1970), “Algorithm to compute tropospheric refraction effects on range measurements.” Journal of Geophysical Research, 20. December, Vol. 75, No. 36, pp. 7636– 7637.

    Article  Google Scholar 

  • Yunck, T.P. (1993), “Coping with the atmosphere and ionosphere in precise satellite and ground positioning.” Environmental Effects on Spacecraft Positioning and Trajectories, Ed. A Vallance Jones, based on papers presented at a Union Symposium held at the XXth General Assembly of the International Union of Geodesy and Geophysics, Vienna, August, 1991. Geophysical Monograph No. 73, American Geophysical Union, Washington, D.C., pp. 1–16.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langley, R.B. (1998). Propagation of the GPS Signals. In: Teunissen, P.J.G., Kleusberg, A. (eds) GPS for Geodesy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72011-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72011-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72013-0

  • Online ISBN: 978-3-642-72011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics