Skip to main content

GPS Satellite Orbits

  • Chapter
Book cover GPS for Geodesy

Abstract

Nominally the Global Positioning System (GPS) consists of 24 satellites (21+3 active spares). The satellites are in almost circular orbits approximately 20 000 km above the surface of the Earth. The siderial revolution period is almost precisely half a siderial day (11h 58m). All GPS satellites, therefore, are in deep 2:1 resonance with the rotation of the Earth with respect to inertial space. This particular characteristic gives rise to perturbations to be discussed in section 2.3.3. Thanks to this particular revolution period essentially the same satellite configuration is observed at a given point on the surface of the Earth at the same time of the day on consecutive days (the constellation repeats itself almost perfectly after 23h56mUT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauersima, I. (1983), “Navstar/Global Positioning System (GPS) (II)”, Mitteilung No. 10 der Satellitenbeobachtungsstation Zimmerwald, Druckerei der Universität Bern.

    Google Scholar 

  • Beutler, G. (1990), “Numerische Integration gewöhnlicher Differentialgleichungssysteme: Prinzipien und Algorithmen”, Mitteilung Nr. 23 der Satellitenbeobachtungsstation Zimmerwald.

    Google Scholar 

  • Beutler, G., A. Verdun (1992), “Himmelsmechanik II: Der erdnahe Raum” Mitteilung No. 28 der Satellitenbeobachtungsstation Zimmerwald, Druckerei der Universität Bern.

    Google Scholar 

  • Beutler, G., I.I. Mueller, R.E. Neilan, R. Weber (1994a), “IGS - Der Internationale GPS-Dienst für Geodynamik” Zeitschrift fur Vermessungswesen, Deutscher Verein fur Vermessungswesen (DVW), Jahrgang: 119, May, Heft 5, S. 221–232.

    Google Scholar 

  • Beutler, G., I.I. Mueller, R.E. Neilan (1994b), “The International GPS Service for Geodynamics (IGS): Development and Start of Official Service on January 1, 1994”, Bulletin Géodésique, Vol. 68, 1, pp. 39–70.

    Google Scholar 

  • Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher, A. Verdun (1994c), “Extended Orbit Modelling Techniques at the CODE Processing Center of the IGS: Theory and Initial Results”, Manuscripta Geodaetica, Vol. 19, pp. 367–386.

    Google Scholar 

  • Beutler, G., E. Brockmann, U. Hugentobler, L. Mervart, M. Rothacher, R. Weber (1995a), “Combining Consecutive Short Arcs into Long Arcs for Precise and Efficient GPS Orbit Determination”, Journal of Geodesy, Vol. 70, pp. 287–299, 1996.

    Google Scholar 

  • Beutler, G. J. Kouba, T. Springer (1995b), “Combining the Orbits of the Analysis Centers”, Bulletin Géodésique, Vol. 69, pp. 200–222, 1995.

    Article  Google Scholar 

  • Brouwer, D. (1937), “On the accumulation of errors in numerical integration”, Astronomical Journal, Volume 46, No 1072, p. 149 ff.

    Google Scholar 

  • Danby, J.M.A. (1989), “Fundamentals of Celestial Mechanics”, Willmann-Bell, INC., Richmond, Va., Second Edition, Second Printing, ISBN 0-943396-20-4.

    Google Scholar 

  • Euler, L. (1749), “Recherches sur le mouvement des corps celestes en general”, Mémoires de l’académie des sciences de Berlin [3] (1747), pp. 93–143.

    Google Scholar 

  • Euler, L. (1768), “Institutio calculi integralis”, Volumen primum, sectio secunda: De integratione aequatiorum differentialium per approximationem. Caput VII. Petropoli, Academiae Imperialis Scientiarum.

    Google Scholar 

  • Fehlberg, E. (1972), “Classical Eighth and Lower Order Runge-Kutta-Nystrom Formulas with Stepsize Control for Special Second Order Differential Equations”, NASA Technical Report TR-R-381.

    Google Scholar 

  • Fliegel, H.F., T.E. Gallini, E.R. Swift (1992), “Global Positioning System Radiation Force Model for Geodetic Applications”, Journal of Geophysical Research, Vol. 97, No. Bl, pp.559–568.

    Article  Google Scholar 

  • Gauss, C.F. (1809), “Theoria motus corporum coelestium in sectionibus conicis solem ambientum”, Hamburgi, Perthes & Besser.

    Google Scholar 

  • Goad, C. (1993), “IGS Orbit Comparisons”, Proceedings of 1993 IGS Workshop”, pp. 218–225, Druckerei der Universität Bern.

    Google Scholar 

  • Green, G.B., P.D. Massatt, N.W. Rhodus (1989), “The GPS 21 Primary Satellite Constellation” Navigation, Journal of the Institute of Navigation, Vol 36, No.l, pp. 9–24.

    Google Scholar 

  • Heiskanen, W.A., H. Moritz (1967), “Physical Geodesy”, W.H. Freeman and Company, San Francisco and London.

    Google Scholar 

  • Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins. (1994), “GPS Theory and Practice”, Third revised edition, Springer-Verlag Wien, New York.

    Google Scholar 

  • Hugentobler, U., G. Beutler (1994), “Resonance Phenomena in the Global Positioning System”, In:: Kurzynska, K./Barlier F./Seidelman, P.K./Wytrzyszczak, I. (eds.) “Dynamics and Astrometry of Natural and Artificial Celestial Bodies”, Proceedings of the Conference on Astrometry and Celestial Mechanics, Poznan, Poland, September 13-17, 1993. Published by Astronomical Observatory of A. Mickiewicz University, Poznan, 1994, p. 347-352.

    Google Scholar 

  • Hugentobler, U. (1996),“Astrometry and Satellite Orbits: Theoretical Considerations and Typical Applications”, Ph.D. Thesis, University of Bern.

    Google Scholar 

  • Kaula, W.M. (1966), “Theory of Satellite Geodesy”, Blaisdell Publication Cie., Waltham.

    Google Scholar 

  • Kepler, J. (1609), “Astronomia nova de motibus stellae Martis ex observationibus Tychonis Brahe”, Pragae.

    Google Scholar 

  • Kepler, J. (1619), “Harmonices mundi libri V”, Lincii.

    Google Scholar 

  • Kouba, J. (1993), “Proceedings of the IGS Analysis Center Workshop”, October 12-14, 1993, Geodetic Survey Division, Surveys, Mapping, and Remote Sensing Sector, NR Can, Ottawa, Canada.

    Google Scholar 

  • Kouba, J., Y. Mireault, F. Lahaye (1995), “Rapid Service IGS Orbit Combination - Week 0787”, IGS Report No 1578, IGS Central Bureau Information System.

    Google Scholar 

  • Landau, H. (1988), “Zur Nutzung des Global Positioning Systems in Geodäsie und Geodynamik: Modellbildung, Software-Entwicklung und Analyse”, Ph.D. Thesis, Studiengang Vermessungswesen, Universität der Bundeswehr München, Neubiberg.

    Google Scholar 

  • Lundquist, C.A., G. Veis (1966), “Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth”, Volumes I-III, Smithsonian Astrophysical Observatory, Special Report 200.

    Google Scholar 

  • McCarthy, D.D. (1992), “IERS Standards (1992)”, IERS Technical Note No. 13, Observatoire de Paris.

    Google Scholar 

  • Newton, I. (1687), “Philosophiae naturalis principia mathematica”, Joseph Streater, Londini.

    Google Scholar 

  • Remondi, B.W. (1989), “Extending the National Geodetic Survey Standard GPS Orbit Formats”, NOAA Technical Report NOS 133 NGS 46, Rockville, MD.

    Google Scholar 

  • Rothacher, M. (1992), “Orbits of Satellite Systems in Space Geodesy”, Geodätisch- geophysikalische Arbeiten in der Schweiz, Vol 46, 253 pages, Schweizerische Geodätische Kommission.

    Google Scholar 

  • Seeber, G. (1993), “Satellite Geodesy”, Walter de Gruyter, Berlin/New York.

    Google Scholar 

  • Shampine, L.F., M.K. Gordon (1975), “Computer solution of ordinary differential equations, the Initial value problem”, Freedman & Cie.

    Google Scholar 

  • Van Dierendonck, A., S. Russell, E. Kopitzke, M. Birnbaum (1978), “The GPS Navigation Message”, Journal of the Institute of Navigation, Vol. 25, No. 2, pp. 147–165, Washington.

    Google Scholar 

  • Zielinski, J.B. (1988), “Covariances in 3D Network Resulting From Orbital Errors”. Proceedings of the International GPS-Workshop, Darmstadt, April 10-13, published in Lecture Notes in Earth Sciences, GPS-Techniques Applied to Geodesy and Surveying, Springer Verlag, Berlin, pp. 504–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beutler, G., Weber, R., Hugentobler, U., Rothacher, M., Verdun, A. (1998). GPS Satellite Orbits. In: Teunissen, P.J.G., Kleusberg, A. (eds) GPS for Geodesy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72011-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72011-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72013-0

  • Online ISBN: 978-3-642-72011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics