Skip to main content

Reference Systems

  • Chapter
GPS for Geodesy

Abstract

Of fundamental importance in space geodetic positioning is the precise definition and realization of terrestrial and celestial reference systems. It is appropriate then that this topic be covered in the first chapter of these notes on the Global Positioning System (GPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abusali, P. A. M., B. E. Schutz (1995), B. D. Tapley and M. Bevis, Transformation between SLR/VLBI and WGS-84 reference frames, Bull. Géodesique, 69, 61–72.

    Article  Google Scholar 

  • Aoki, S., B. Guinot, G. H. Kaplan, H. Kinoshita, D. D. McCarthy and P. K. Seidelmann (1982), The new definition of Universal time, Astron. Astrophys., 105,359–361.

    Google Scholar 

  • Argus, D. F. and R. G. Gordon (1991), No-Net-Rotation model of current plate velocities incorporating plate rotation model NUVEL-1, Geophys. Res. Lett., 18, 2039–2042.

    Article  Google Scholar 

  • Argus, D. F. (1996), Postglacial rebound from VLBI geodesy: On establishing vertical reference, Geophys. Res. Lett. 23, 973–976.

    Article  Google Scholar 

  • Arias, E. F., P. Chariot, M. Feissel, J.-F. Lestrade (1995), The Extragalactic reference system of the International Earth Rotation Service, ICRS, Astron. Astrophys., 303, 604–608.

    Google Scholar 

  • Beutler, G. and E. Brockmann (eds.) (1993), Proceedings of the 1993 IGS Workshop, International Association of Geodesy, Druckerei der Universität Bern.

    Google Scholar 

  • Beutler, G., I. I. Mueller, and R. E. Neilan (1994), The International GPS Service for Geodynamics (IGS): Development and start of official service on January 1, 1994, Bull. Géodesique , 68, 39–70.

    Article  Google Scholar 

  • Bock, Y. (1982), The use of baseline measurements and geophysical models for the estimation of crustal deformations and the terrestrial reference system, Department of Geodetic Science and Surveying Report No. 337, The Ohio State University.

    Google Scholar 

  • Bock, Y., et al. (1997), Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes, J. Geophys. Res., in press.

    Google Scholar 

  • Boucher, C, Z. Altamimi, M. Feissel, and P. Sillard (1996), Results and Analysis of the ITRF94, IERS Technical Note 20, Observatoire de Paris.

    Google Scholar 

  • Brosche, P., U. Seiler, J. Sundermann, and J. Wünsch (1989), Periodic changes in Earth’s rotation due to oceanic tides, Astron. Astrophys., 220, 318–320.

    Google Scholar 

  • Brosche, P., J. Wünsch, J. Campbell, and H. Schuh (1991), Ocean tide effects in universal time detected by VLBI, Astron. Astrophys., 245, 676–682.

    Google Scholar 

  • Chao, B. F., R. D. Ray, J. M. Gipson, G. D. Egbert, and C. Ma (1996), Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum, J. Geophys. Res., 101, 20,151– 20,163.

    Google Scholar 

  • Chariot, P., O. J. Sovers, J. G. Williams, and X. X. Newhall (1995), Precession and nutation from joint analysis of radio interferometric and lunar laser ranging observations, Astron. J., 109,418–427.

    Article  Google Scholar 

  • Chin, M. (Ed.) (1989), GPS Bulletin 2, CSTG Subcommission., National Geodetic Survey, Silver Spring, Md.

    Google Scholar 

  • DeMets, C., R. G. Gordon, D. Argus and S. Stein (1990), Current Plate Motions, Geophys. J. Int., 101,425–418.

    Article  Google Scholar 

  • DeMets, C, R. G. Gordon, D. Argus and S. Stein (1994), Effects of revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 27,2191–2194.

    Article  Google Scholar 

  • Elosegui, P., J. L. Davis, R. T. K. Jaldehag, J. M. Johansson, A. E. Niell and I. I. Shapiro (1995), Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position, J. Geophys. Res., 100, 9921–9934.

    Article  Google Scholar 

  • Genrich, J. F., Y. Bock, R. McCaffrey, E. Calais, C. W. Stevens, and C. Subarya (1996), Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements, Tectonics, 15, 288–295.

    Article  Google Scholar 

  • Goad, C.C. (1983), in IAU, IUGG Joint Working Group on the Rotation of the Earth, Project MERIT Standards, U.S. Naval Observatory Circular No. 167, A7-1 to A7-25, USNO, Washington, D.C.

    Google Scholar 

  • Gross, R. S. (1993), The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model, Geophys. Res. Lett., 20, 293–296.

    Article  Google Scholar 

  • Gurtner, W. (1994), RINEX-The Receiver Independent Exchange Format, GPS World, 5, July, 48-52.

    Google Scholar 

  • Gwinn, C. R., T. A. Herring and I. I. Shapiro (1986), Geodesy by radio interferometry, Studies of the forced nutations of the Earth 2. Interpretation, J. Geophys. Res., 91, 4755–4765.

    Article  Google Scholar 

  • Heiskanen, W. A. and H. Moritz (1967), Physical Geodesy, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Herring, T. A., C. R. Gwinn and I.I. Shapiro (1986), Geodesy by radio interferometry: Studies of the forced nutations of the Earth, Part I: Data analysis, J. Geophys. Res., 91, 4745–4754.

    Article  Google Scholar 

  • Herring T. A. and D. N. Dong (1991), Current and future accuracy of Earth rotation measurements, Proceedings AGU Chapman Conference on geodetic VLBI: Monitoring global change, NOAA Tech. Rept. NOS 137 NGS 49, 306-324, Rockville, MD.

    Google Scholar 

  • Herring, T. A. (1992), Modeling atmospheric delays in the analysis of space geodetic data, in Refraction of Transatmospheric Signals in Geodesy, J. C. DeMunck and T. A. Th Spoelstra, Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Herring, T. A. (1993), Diurnal and semidiurnal variations in Earth rotation, in The orientation of the planet Earth as observed by modern space techniques, Advances in Space Research, Pergamon Press, New York, 147–156.

    Google Scholar 

  • Herring T. A. and D. N. Dong (1994), Measurement of diurnal and semidiurnal rotational variations and tidal parameters, J. Geophys. Res., 99, 18,051-18,071.

    Google Scholar 

  • International GPS Service for Geodynamics (1995), Resource Information, Int. Assoc. of Geodesy, May.

    Google Scholar 

  • International Earth Rotation Service (1994), Explanatory Supplement to IERS Bulletins A and B, IERS, March.

    Google Scholar 

  • International Earth Rotation Service (1995), IERS: Missions and Goals for 2000, Bureau Central de 1’IERS, Paris, May.

    Google Scholar 

  • International Earth Rotation Service (1995), 1994 Annual Report, Observatoire de Paris, July.

    Google Scholar 

  • Kaula, W. M. (1966), Theory of Satellite Geodesy, Blaisdell Publishing Company.

    Google Scholar 

  • Kaplan, G. H. (1981), The IAU resolutions of astronomical constants, time scales, and the fundamental reference frame, United States Naval Observatory Circular No. 163, U.S. Naval Observatory, Washington, D.C.

    Google Scholar 

  • King, R. W., E.G. Masters, C. Rizos, A. Stolz and J. Collins (1985), Surveying with GPS2 School of Surveying Monograph No. 9, The University of New South Wales, Australia.

    Google Scholar 

  • Kouba, J., (ed.) (1993), Proceedings of the IGS Analysis Center Workshop, Oct. 12-14, Ottawa, Canada.

    Google Scholar 

  • Lambeck, K. (1988), Geophysical Geodesy, Clarendon Press, Oxford.

    Google Scholar 

  • Langbein, J. 0., F. Wyatt, H. Johnson, D. Hamann, and P. Zimmer (1995), Improved stability of a deeply anchored geodetic monument for deformation monitoring, Geophys. Res. Lett., 22, 3533–3536.

    Article  Google Scholar 

  • Langbein, J. 0., and H. Johnson (1997), Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, 591–604.

    Article  Google Scholar 

  • Leick A. (1990), GPS Satellite Surveying, John Wiley and Sons, New York.

    Google Scholar 

  • Lieske, J. H., T. Lederle, W. Fricke and B. Morando (1977), Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants, Astron. Astrophys., 58, 1–16.

    Google Scholar 

  • MacMillan, D. S., and J. M. Gipson (1994), Atmospheric pressure loading parameters from very long baseline interferometry observations, J. Geophys. Res., 99, 18,081-18,087.

    Google Scholar 

  • Malys, S. and J. Slater (1994), Maintenance and enhancement of the World Geodetic System 1984, J. Institute of Navigation, 41, 17–24.

    Google Scholar 

  • Manabe, S., T. Sato, S. Sakai, and K. Yokoyama (1991), Atmospheric loading effect on VLBI observations, Proceedings of the AGU Chapman Conference on Geodetic VLBI: monitoring Global Change, 111–122, NOAA Tech. Rep. NOS 137, NGS 49.

    Google Scholar 

  • Mathews, P.M., B. A. Buffett, T. A. Herring, and I. I. Shapiro (1991), Forced nutations of the Earth, Influence of inner core dynamics: 1. Theory, J. Geophys. Res., 96B, 8219–8242.

    Article  Google Scholar 

  • Mathews, P. M., B. A. Buffett, and I.I. Shapiro (1995), Love numbers for a rotating spheroidal Earth: New definitions and numerical values, Geophys. Res. Lett., 22, 579–582.

    Article  Google Scholar 

  • McCarthy, D. D. (1989), International Earth Rotation Service Standards, IERS Technical Note 3, Observatoire de Paris.

    Google Scholar 

  • McCarthy, sD. D. (1992), International Earth Rotation Service Standards, IERS Technical Note 13, Observatoire de Paris.

    Google Scholar 

  • McCarthy, D. D. (1996), International Earth Rotation Service Conventions 1996, IERS Tech. Note 21, Observatoire de Paris.

    Google Scholar 

  • Melbourne, W., R. Anderle, M. Feissel, R. King, D. McCarthy, D. Smith, B. Tapley and R. Vicente (1983), Project MERIT Standards, U.S. Naval Observatory Circular No. 167, A7- 1 to A7-25, USNO, Washington, D.C.

    Google Scholar 

  • Melchior, P. (1966), The Earth Tides, Pergamon Press, New York.

    Google Scholar 

  • Minster, B., W. H. Prescott, L. Royden, Y. Bock, K. Kastens, M. McNutt, G. Peltzer, R. Reilinger, J., Rundle, J. Sauber, J. Scheid and M. Zuber (1989), Report of the Plate Motion and Deformation Panel, NASA Coolfont Workshop, August.

    Google Scholar 

  • Minster, J. B., B. H. Hager, W. H. Prescott and R. E. Schutz (1991), International global network of fiducial stations, U.S. National Research Council Report, National Academy Press, Washington, D.C.

    Google Scholar 

  • Mitrovica, J. X., J. L. Davis, and I. I. Shapiro (1993), Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline rates in North America, Geophys. Res. Lett., 20, 2387–2390.

    Article  Google Scholar 

  • Moritz, H. and I.I. Mueller (1987), Earth Rotation, Theory and Observation, Ungar Publishing Company, New York.

    Google Scholar 

  • Mueller, I. I. (1971), Spherical and Practical Astronomy as Applied to Geodesy, Ungar, New York.

    Google Scholar 

  • Mueller, I. I., S. Y. Zhu, and Y. Bock (1982), Reference frame requirements and the MERIT campaign, Department of Geodetic Science and Surveying Report No. 329, The Ohio State University.

    Google Scholar 

  • Mueller, I. and S. Zerbini (eds.) (1989), The interdisciplinary role of space geodesy, Lecture Notes in Earth Sciences, Vol. 22, Springer Verlag, Berlin.

    Google Scholar 

  • Munk, W. H. and G. J. F. MacDonald (1975), The Rotation of the Earth, Cambridge Univ. Press, U.K.

    Google Scholar 

  • Peltier, W. R. (1995), VLBI baseline variations from ICE-4G model of postglacial rebound, Geophys. Res. Lett., 22, 465–468.

    Article  Google Scholar 

  • Rabbel, W. and H. Schuh (1986), The influence of atmospheric loading on VLBI experiments, J. Geophys., 59, 164–170.

    Google Scholar 

  • Ray, R. D., D. J. Steinberg, B. F. Chao, and D. E. Cartwright (1994), Diurnal and semidiurnal variations in the Earth’s rotation rate induced by ocean tides, Science, 264, 830–832.

    Article  Google Scholar 

  • Ray, J. R. (1996), Measurements of length of day using the Global Positioning System, J. Geophys. Res., 101, 20,141–20,149.

    Google Scholar 

  • Scherneck, H. G. (1983), Crustal loading affecting VLBI sites, University of Uppsala, Institute of Geophysics, Dept. of Geodesy Report No. 20, Uppsala, Sweden.

    Google Scholar 

  • Scherneck, H. G. (1991), A parameterised solid Earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophys. J. Int., 106, 611–694.

    Article  Google Scholar 

  • Schupler, B. R., R. L. Allshouse sand T. A. Clark (1994), Signal characteristics of GPS user antennas, J. Inst. Navigation, 41, 277–295.

    Google Scholar 

  • Seidelmann, P. K. (1982), The 1980 theory of nutation: the final report of the IAU Working Group on Nutation, Celestial Mechanics, 27, 79–106.

    Article  Google Scholar 

  • Seidelmann, P. K., (ed.)(1992), Explanatory Supplement sto the Astronomical Almanac, University Science Books, Mill Valley, California.

    Google Scholar 

  • Seiler, U., and J. Wunsch (1995), A refined model for the influence of ocean tides on UT1 and polar motion, Astron. Nachr., 316, 419–423.

    Article  Google Scholar 

  • Simon, J. L., P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou, and J. Laskar (1994), Numerical expressions for precession formulae and mean elements for the Moon and Planets, Astron. Astrophys. 282, 663–683.

    Google Scholar 

  • Sovers O. J., C. S. Jacobs and R. S. Gross (1993), Measuring rapid ocean tidal Earth orientation variations with VLBI, J. Geophys. Res., 98, 19,959–19,9971.

    Article  Google Scholar 

  • Sovers, O. J. and C. S. Jacobs (1996), Observation models and parameter partials for the JPL VLBI parameter estimation software “MODEST”-1996, JPL Publication 83–89, Rev. 6.

    Google Scholar 

  • Swift, E. (1994), Improved WGS 84 coordinates for the DMA and Air Force GPS tracking sites, J. Institute of Navigation, 41, 285–291.

    Google Scholar 

  • Van Dam, T. M. and T. A. Herring (1994), Detection of atmospheric pressure loading using very long baseline interferometry, J. Geophys. Res., 99, 4505–4517.

    Article  Google Scholar 

  • Van Dam, T. M., G. Blewitt, and M. B. Heflin (1994), Atmospheric pressure loading effects on Global Positioning System coordinate determinations, J. Geophys. Res., 99, 23,939– 23,950.

    Google Scholar 

  • Wahr, J. M. (1979), The tidal motions of a rotating, elliptical, elastic and oceanless Earth, PhD thesis, Dept. of Physics, University of Colorado, Boulder.

    Google Scholar 

  • Wahr, J. M., Deformation induced by polar motion, J. Geophys. Res., 90, 9363–9368, 1985.

    Article  Google Scholar 

  • Walter, H. and O. J. Sovers, Precession and nutation from the analysis of positions of extragalactic radio sources, Astrophys. J., 308, 1001–1008, 1996.

    Google Scholar 

  • Watkins, M. M. and R. J. Eanes (1994), Diurnal and semidiurnal variations in Earth orientation determined from LAGEOS laser ranging, J. Geophys. Res., 90, 18,073–18,079.

    Google Scholar 

  • Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California Permanent GPS Geodetic Array: Spatial Filtering of Daily Positions for Estimating Coseismic and postseismic displacements Induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18,057–18,070.

    Article  Google Scholar 

  • Wyatt, F. (1982), Displacements of surface monuments: horizontal motion, J. Geophys. Res., 87, 979–989.

    Article  Google Scholar 

  • Wyatt, F. (1989), Displacements of surface monuments: vertical motion, J. Geophys. Res., 94, 1655–1664.

    Article  Google Scholar 

  • Yoder, C.F., J. G. Williams and M. E. Parke (1981), Tidal variations of Earth rotation, J. Geophys. Res.,86,881–891.

    Article  Google Scholar 

  • Zhang, J., Y. Bock, H. Johnson, P. Fang, J. Genrich, S. Williams, S. Wdowinski and J. Behr (1997), Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035–18,055.

    Google Scholar 

  • Zhu, S. Y. and E. Groten (1989), Various aspects of numerical determination of nutation constants. I. Improvement of rigid-Earth nutation, Astron. J., 98, 1104–1111.

    Article  Google Scholar 

  • Zhu, S. Y., E. Groten and C. Reigber (1990), Various aspects of numerical determination of nutation constants. II. An improved nutation series for the deformable Earth, Astron. J., 99, 1024–1044.

    Article  Google Scholar 

  • Zumberge, J. F., R. E. Neilan, G. Beutler and W. Gurtner (1994), The International GPS Service for Geodynamics- benefits to users, Institute of Navigation, Proceedings ION GPS-94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, Y. (1998). Reference Systems. In: Teunissen, P.J.G., Kleusberg, A. (eds) GPS for Geodesy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72011-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72011-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72013-0

  • Online ISBN: 978-3-642-72011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics