Of fundamental importance in space geodetic positioning is the precise definition and realization of terrestrial and celestial reference systems. It is appropriate then that this topic be covered in the first chapter of these notes on the Global Positioning System (GPS).


Global Position System Very Long Baseline Interferometry Satellite Laser Range Polar Motion Global Position System Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abusali, P. A. M., B. E. Schutz (1995), B. D. Tapley and M. Bevis, Transformation between SLR/VLBI and WGS-84 reference frames, Bull. Géodesique, 69, 61–72.CrossRefGoogle Scholar
  2. Aoki, S., B. Guinot, G. H. Kaplan, H. Kinoshita, D. D. McCarthy and P. K. Seidelmann (1982), The new definition of Universal time, Astron. Astrophys., 105,359–361.Google Scholar
  3. Argus, D. F. and R. G. Gordon (1991), No-Net-Rotation model of current plate velocities incorporating plate rotation model NUVEL-1, Geophys. Res. Lett., 18, 2039–2042.CrossRefGoogle Scholar
  4. Argus, D. F. (1996), Postglacial rebound from VLBI geodesy: On establishing vertical reference, Geophys. Res. Lett. 23, 973–976.CrossRefGoogle Scholar
  5. Arias, E. F., P. Chariot, M. Feissel, J.-F. Lestrade (1995), The Extragalactic reference system of the International Earth Rotation Service, ICRS, Astron. Astrophys., 303, 604–608.Google Scholar
  6. Beutler, G. and E. Brockmann (eds.) (1993), Proceedings of the 1993 IGS Workshop, International Association of Geodesy, Druckerei der Universität Bern.Google Scholar
  7. Beutler, G., I. I. Mueller, and R. E. Neilan (1994), The International GPS Service for Geodynamics (IGS): Development and start of official service on January 1, 1994, Bull. Géodesique , 68, 39–70.CrossRefGoogle Scholar
  8. Bock, Y. (1982), The use of baseline measurements and geophysical models for the estimation of crustal deformations and the terrestrial reference system, Department of Geodetic Science and Surveying Report No. 337, The Ohio State University.Google Scholar
  9. Bock, Y., et al. (1997), Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes, J. Geophys. Res., in press.Google Scholar
  10. Boucher, C, Z. Altamimi, M. Feissel, and P. Sillard (1996), Results and Analysis of the ITRF94, IERS Technical Note 20, Observatoire de Paris.Google Scholar
  11. Brosche, P., U. Seiler, J. Sundermann, and J. Wünsch (1989), Periodic changes in Earth’s rotation due to oceanic tides, Astron. Astrophys., 220, 318–320.Google Scholar
  12. Brosche, P., J. Wünsch, J. Campbell, and H. Schuh (1991), Ocean tide effects in universal time detected by VLBI, Astron. Astrophys., 245, 676–682.Google Scholar
  13. Chao, B. F., R. D. Ray, J. M. Gipson, G. D. Egbert, and C. Ma (1996), Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum, J. Geophys. Res., 101, 20,151– 20,163.Google Scholar
  14. Chariot, P., O. J. Sovers, J. G. Williams, and X. X. Newhall (1995), Precession and nutation from joint analysis of radio interferometric and lunar laser ranging observations, Astron. J., 109,418–427.CrossRefGoogle Scholar
  15. Chin, M. (Ed.) (1989), GPS Bulletin 2, CSTG Subcommission., National Geodetic Survey, Silver Spring, Md.Google Scholar
  16. DeMets, C., R. G. Gordon, D. Argus and S. Stein (1990), Current Plate Motions, Geophys. J. Int., 101,425–418.CrossRefGoogle Scholar
  17. DeMets, C, R. G. Gordon, D. Argus and S. Stein (1994), Effects of revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 27,2191–2194.CrossRefGoogle Scholar
  18. Elosegui, P., J. L. Davis, R. T. K. Jaldehag, J. M. Johansson, A. E. Niell and I. I. Shapiro (1995), Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position, J. Geophys. Res., 100, 9921–9934.CrossRefGoogle Scholar
  19. Genrich, J. F., Y. Bock, R. McCaffrey, E. Calais, C. W. Stevens, and C. Subarya (1996), Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements, Tectonics, 15, 288–295.CrossRefGoogle Scholar
  20. Goad, C.C. (1983), in IAU, IUGG Joint Working Group on the Rotation of the Earth, Project MERIT Standards, U.S. Naval Observatory Circular No. 167, A7-1 to A7-25, USNO, Washington, D.C.Google Scholar
  21. Gross, R. S. (1993), The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model, Geophys. Res. Lett., 20, 293–296.CrossRefGoogle Scholar
  22. Gurtner, W. (1994), RINEX-The Receiver Independent Exchange Format, GPS World, 5, July, 48-52.Google Scholar
  23. Gwinn, C. R., T. A. Herring and I. I. Shapiro (1986), Geodesy by radio interferometry, Studies of the forced nutations of the Earth 2. Interpretation, J. Geophys. Res., 91, 4755–4765.CrossRefGoogle Scholar
  24. Heiskanen, W. A. and H. Moritz (1967), Physical Geodesy, W. H. Freeman and Company, San Francisco.Google Scholar
  25. Herring, T. A., C. R. Gwinn and I.I. Shapiro (1986), Geodesy by radio interferometry: Studies of the forced nutations of the Earth, Part I: Data analysis, J. Geophys. Res., 91, 4745–4754.CrossRefGoogle Scholar
  26. Herring T. A. and D. N. Dong (1991), Current and future accuracy of Earth rotation measurements, Proceedings AGU Chapman Conference on geodetic VLBI: Monitoring global change, NOAA Tech. Rept. NOS 137 NGS 49, 306-324, Rockville, MD.Google Scholar
  27. Herring, T. A. (1992), Modeling atmospheric delays in the analysis of space geodetic data, in Refraction of Transatmospheric Signals in Geodesy, J. C. DeMunck and T. A. Th Spoelstra, Netherlands Geodetic Commission, Delft, The Netherlands.Google Scholar
  28. Herring, T. A. (1993), Diurnal and semidiurnal variations in Earth rotation, in The orientation of the planet Earth as observed by modern space techniques, Advances in Space Research, Pergamon Press, New York, 147–156.Google Scholar
  29. Herring T. A. and D. N. Dong (1994), Measurement of diurnal and semidiurnal rotational variations and tidal parameters, J. Geophys. Res., 99, 18,051-18,071.Google Scholar
  30. International GPS Service for Geodynamics (1995), Resource Information, Int. Assoc. of Geodesy, May.Google Scholar
  31. International Earth Rotation Service (1994), Explanatory Supplement to IERS Bulletins A and B, IERS, March.Google Scholar
  32. International Earth Rotation Service (1995), IERS: Missions and Goals for 2000, Bureau Central de 1’IERS, Paris, May.Google Scholar
  33. International Earth Rotation Service (1995), 1994 Annual Report, Observatoire de Paris, July.Google Scholar
  34. Kaula, W. M. (1966), Theory of Satellite Geodesy, Blaisdell Publishing Company.Google Scholar
  35. Kaplan, G. H. (1981), The IAU resolutions of astronomical constants, time scales, and the fundamental reference frame, United States Naval Observatory Circular No. 163, U.S. Naval Observatory, Washington, D.C.Google Scholar
  36. King, R. W., E.G. Masters, C. Rizos, A. Stolz and J. Collins (1985), Surveying with GPS2 School of Surveying Monograph No. 9, The University of New South Wales, Australia.Google Scholar
  37. Kouba, J., (ed.) (1993), Proceedings of the IGS Analysis Center Workshop, Oct. 12-14, Ottawa, Canada.Google Scholar
  38. Lambeck, K. (1988), Geophysical Geodesy, Clarendon Press, Oxford.Google Scholar
  39. Langbein, J. 0., F. Wyatt, H. Johnson, D. Hamann, and P. Zimmer (1995), Improved stability of a deeply anchored geodetic monument for deformation monitoring, Geophys. Res. Lett., 22, 3533–3536.CrossRefGoogle Scholar
  40. Langbein, J. 0., and H. Johnson (1997), Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, 591–604.CrossRefGoogle Scholar
  41. Leick A. (1990), GPS Satellite Surveying, John Wiley and Sons, New York.Google Scholar
  42. Lieske, J. H., T. Lederle, W. Fricke and B. Morando (1977), Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants, Astron. Astrophys., 58, 1–16.Google Scholar
  43. MacMillan, D. S., and J. M. Gipson (1994), Atmospheric pressure loading parameters from very long baseline interferometry observations, J. Geophys. Res., 99, 18,081-18,087.Google Scholar
  44. Malys, S. and J. Slater (1994), Maintenance and enhancement of the World Geodetic System 1984, J. Institute of Navigation, 41, 17–24.Google Scholar
  45. Manabe, S., T. Sato, S. Sakai, and K. Yokoyama (1991), Atmospheric loading effect on VLBI observations, Proceedings of the AGU Chapman Conference on Geodetic VLBI: monitoring Global Change, 111–122, NOAA Tech. Rep. NOS 137, NGS 49.Google Scholar
  46. Mathews, P.M., B. A. Buffett, T. A. Herring, and I. I. Shapiro (1991), Forced nutations of the Earth, Influence of inner core dynamics: 1. Theory, J. Geophys. Res., 96B, 8219–8242.CrossRefGoogle Scholar
  47. Mathews, P. M., B. A. Buffett, and I.I. Shapiro (1995), Love numbers for a rotating spheroidal Earth: New definitions and numerical values, Geophys. Res. Lett., 22, 579–582.CrossRefGoogle Scholar
  48. McCarthy, D. D. (1989), International Earth Rotation Service Standards, IERS Technical Note 3, Observatoire de Paris.Google Scholar
  49. McCarthy, sD. D. (1992), International Earth Rotation Service Standards, IERS Technical Note 13, Observatoire de Paris.Google Scholar
  50. McCarthy, D. D. (1996), International Earth Rotation Service Conventions 1996, IERS Tech. Note 21, Observatoire de Paris.Google Scholar
  51. Melbourne, W., R. Anderle, M. Feissel, R. King, D. McCarthy, D. Smith, B. Tapley and R. Vicente (1983), Project MERIT Standards, U.S. Naval Observatory Circular No. 167, A7- 1 to A7-25, USNO, Washington, D.C.Google Scholar
  52. Melchior, P. (1966), The Earth Tides, Pergamon Press, New York.Google Scholar
  53. Minster, B., W. H. Prescott, L. Royden, Y. Bock, K. Kastens, M. McNutt, G. Peltzer, R. Reilinger, J., Rundle, J. Sauber, J. Scheid and M. Zuber (1989), Report of the Plate Motion and Deformation Panel, NASA Coolfont Workshop, August.Google Scholar
  54. Minster, J. B., B. H. Hager, W. H. Prescott and R. E. Schutz (1991), International global network of fiducial stations, U.S. National Research Council Report, National Academy Press, Washington, D.C.Google Scholar
  55. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro (1993), Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline rates in North America, Geophys. Res. Lett., 20, 2387–2390.CrossRefGoogle Scholar
  56. Moritz, H. and I.I. Mueller (1987), Earth Rotation, Theory and Observation, Ungar Publishing Company, New York.Google Scholar
  57. Mueller, I. I. (1971), Spherical and Practical Astronomy as Applied to Geodesy, Ungar, New York.Google Scholar
  58. Mueller, I. I., S. Y. Zhu, and Y. Bock (1982), Reference frame requirements and the MERIT campaign, Department of Geodetic Science and Surveying Report No. 329, The Ohio State University.Google Scholar
  59. Mueller, I. and S. Zerbini (eds.) (1989), The interdisciplinary role of space geodesy, Lecture Notes in Earth Sciences, Vol. 22, Springer Verlag, Berlin.Google Scholar
  60. Munk, W. H. and G. J. F. MacDonald (1975), The Rotation of the Earth, Cambridge Univ. Press, U.K.Google Scholar
  61. Peltier, W. R. (1995), VLBI baseline variations from ICE-4G model of postglacial rebound, Geophys. Res. Lett., 22, 465–468.CrossRefGoogle Scholar
  62. Rabbel, W. and H. Schuh (1986), The influence of atmospheric loading on VLBI experiments, J. Geophys., 59, 164–170.Google Scholar
  63. Ray, R. D., D. J. Steinberg, B. F. Chao, and D. E. Cartwright (1994), Diurnal and semidiurnal variations in the Earth’s rotation rate induced by ocean tides, Science, 264, 830–832.CrossRefGoogle Scholar
  64. Ray, J. R. (1996), Measurements of length of day using the Global Positioning System, J. Geophys. Res., 101, 20,141–20,149.Google Scholar
  65. Scherneck, H. G. (1983), Crustal loading affecting VLBI sites, University of Uppsala, Institute of Geophysics, Dept. of Geodesy Report No. 20, Uppsala, Sweden.Google Scholar
  66. Scherneck, H. G. (1991), A parameterised solid Earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophys. J. Int., 106, 611–694.CrossRefGoogle Scholar
  67. Schupler, B. R., R. L. Allshouse sand T. A. Clark (1994), Signal characteristics of GPS user antennas, J. Inst. Navigation, 41, 277–295.Google Scholar
  68. Seidelmann, P. K. (1982), The 1980 theory of nutation: the final report of the IAU Working Group on Nutation, Celestial Mechanics, 27, 79–106.CrossRefGoogle Scholar
  69. Seidelmann, P. K., (ed.)(1992), Explanatory Supplement sto the Astronomical Almanac, University Science Books, Mill Valley, California.Google Scholar
  70. Seiler, U., and J. Wunsch (1995), A refined model for the influence of ocean tides on UT1 and polar motion, Astron. Nachr., 316, 419–423.CrossRefGoogle Scholar
  71. Simon, J. L., P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou, and J. Laskar (1994), Numerical expressions for precession formulae and mean elements for the Moon and Planets, Astron. Astrophys. 282, 663–683.Google Scholar
  72. Sovers O. J., C. S. Jacobs and R. S. Gross (1993), Measuring rapid ocean tidal Earth orientation variations with VLBI, J. Geophys. Res., 98, 19,959–19,9971.CrossRefGoogle Scholar
  73. Sovers, O. J. and C. S. Jacobs (1996), Observation models and parameter partials for the JPL VLBI parameter estimation software “MODEST”-1996, JPL Publication 83–89, Rev. 6.Google Scholar
  74. Swift, E. (1994), Improved WGS 84 coordinates for the DMA and Air Force GPS tracking sites, J. Institute of Navigation, 41, 285–291.Google Scholar
  75. Van Dam, T. M. and T. A. Herring (1994), Detection of atmospheric pressure loading using very long baseline interferometry, J. Geophys. Res., 99, 4505–4517.CrossRefGoogle Scholar
  76. Van Dam, T. M., G. Blewitt, and M. B. Heflin (1994), Atmospheric pressure loading effects on Global Positioning System coordinate determinations, J. Geophys. Res., 99, 23,939– 23,950.Google Scholar
  77. Wahr, J. M. (1979), The tidal motions of a rotating, elliptical, elastic and oceanless Earth, PhD thesis, Dept. of Physics, University of Colorado, Boulder.Google Scholar
  78. Wahr, J. M., Deformation induced by polar motion, J. Geophys. Res., 90, 9363–9368, 1985.CrossRefGoogle Scholar
  79. Walter, H. and O. J. Sovers, Precession and nutation from the analysis of positions of extragalactic radio sources, Astrophys. J., 308, 1001–1008, 1996.Google Scholar
  80. Watkins, M. M. and R. J. Eanes (1994), Diurnal and semidiurnal variations in Earth orientation determined from LAGEOS laser ranging, J. Geophys. Res., 90, 18,073–18,079.Google Scholar
  81. Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California Permanent GPS Geodetic Array: Spatial Filtering of Daily Positions for Estimating Coseismic and postseismic displacements Induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18,057–18,070.CrossRefGoogle Scholar
  82. Wyatt, F. (1982), Displacements of surface monuments: horizontal motion, J. Geophys. Res., 87, 979–989.CrossRefGoogle Scholar
  83. Wyatt, F. (1989), Displacements of surface monuments: vertical motion, J. Geophys. Res., 94, 1655–1664.CrossRefGoogle Scholar
  84. Yoder, C.F., J. G. Williams and M. E. Parke (1981), Tidal variations of Earth rotation, J. Geophys. Res.,86,881–891.CrossRefGoogle Scholar
  85. Zhang, J., Y. Bock, H. Johnson, P. Fang, J. Genrich, S. Williams, S. Wdowinski and J. Behr (1997), Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035–18,055.Google Scholar
  86. Zhu, S. Y. and E. Groten (1989), Various aspects of numerical determination of nutation constants. I. Improvement of rigid-Earth nutation, Astron. J., 98, 1104–1111.CrossRefGoogle Scholar
  87. Zhu, S. Y., E. Groten and C. Reigber (1990), Various aspects of numerical determination of nutation constants. II. An improved nutation series for the deformable Earth, Astron. J., 99, 1024–1044.CrossRefGoogle Scholar
  88. Zumberge, J. F., R. E. Neilan, G. Beutler and W. Gurtner (1994), The International GPS Service for Geodynamics- benefits to users, Institute of Navigation, Proceedings ION GPS-94.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Yehuda Bock
    • 1
  1. 1.Cecil H. and Ida M. Green, Institute of Geophysics and Planetary Physics, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations