Skip to main content

Heteroepitaxy and Highly Oriented Diamond Deposition

  • Chapter
Low-Pressure Synthetic Diamond

Part of the book series: Springer Series in Materials Processing ((SSMATERIALSPROC))

Abstract

Single-crystal diamond films grown over a large area may open up a new field of solid-states physics and industry, because diamond has several advantageous properties such as high thermal conductivity, hardness and wide bandgap semiconducting characteristics. These advantages are most effectively obtained in the single crystalline phase. The highly oriented or heteroepitaxial growth of diamond is one of the most promising ways of obtaining single crystalline films. Of various substrates, heteroepitaxial growth on silicon (Si) or silicon carbide (SiC) has received much attention [8.1–8], because perfect and large single crystals can be provided in Si, and the development of large single-crystal SiC and heteroepitaxial SiC films on Si has advanced rapidly in recent years. However, highly oriented or heteroepitaxial diamond growth has also been realized on other materials, such as near noble metals, to exhibit the unique qualities of diamond with respect to nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Stoner and J.T. Glass, Appl. Phys. Lett. 60, 698 (1992)

    Article  ADS  Google Scholar 

  2. X. Jiang and C.-P. Klages, Diamond Rel. Mater. 2, 1112 (1993)

    Article  Google Scholar 

  3. S.D. Wolter, B.R. Stoner, J.T. Glass, P.J. Ellis, D.S. Buhaenko, E.E. Jenkins, and P. Southworth, Appl. Phys. Lett. 62, 1215 (1993)

    Article  ADS  Google Scholar 

  4. X. Jiang, C.-P. Klages, R. Zachai, M. Hartweg, and H.-J. Fusser, Appl. Phys. Lett. 62, 3438 (1993)

    Article  ADS  Google Scholar 

  5. B.R. Stoner, C. Kao, D.M. Malta, and R.C. Glass, Appl. Phys. Lett. 62, 2347 (1993)

    Article  ADS  Google Scholar 

  6. R. Kohl, C. Wild, N. Herres, P. Koidl, B.R. Stoner, and J.T. Glass, Appl. Phys. Lett. 63, 1792 (1993)

    Article  ADS  Google Scholar 

  7. H. Kawarada, T. Suesada, and H. Nagasawa, Appl. Phys. Lett. 66, 583 (1995)

    Article  ADS  Google Scholar 

  8. H. Kawarada, C. Wild, N. Herres, R. Locher, and P. Koidl, J. Appl. Phys. 81, 3490 (1997)

    Article  ADS  Google Scholar 

  9. S. Yugo, T. Kanai, T. Kimura, and T. Muito, Appl. Phys. Lett. 58, 1036 (1991)

    Article  ADS  Google Scholar 

  10. T. Suzuki and A. Argoitia, Phys. Status Solidi A 154, 239 (1996)

    Article  ADS  Google Scholar 

  11. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983)

    Article  ADS  Google Scholar 

  12. H. Kawarada, K.S. Mar, and A. Hiraki, Jpn. J. Appl. Phys. 26, L1032 (1987)

    Article  ADS  Google Scholar 

  13. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka, Appl. Phys. Lett. 50, 728 (1987)

    Article  ADS  Google Scholar 

  14. Y. Sato, H. Fujita, T. Ando, T. Tanaka, and M. Kamo, Phil. Trans. R. Soc. Lond. A 342, 225 (1993)

    ADS  Google Scholar 

  15. W. Zhu, P.C. Yang, and J.T. Glass, Appl. Phys. Lett. 63, 1640 (1993)

    Article  ADS  Google Scholar 

  16. W. Liu, D.A. Tucker, P. Yang, and J.T. Glass, J. Appl. Phys. 78, 1291 (1995)

    Article  ADS  Google Scholar 

  17. T. Tachibana, Y. Yokota, K. Nishimura, K. Miyata, K. Kobashi, and Y. Shintani, Diamond Rel. Mater. 5, 197 (1996)

    Article  Google Scholar 

  18. K. Ohtsuka, K. Suzuki, A. Sawabe, and T. Inuzuka, Jpn. J. Appl. Phys. 35, L1072 (1996)

    Article  ADS  Google Scholar 

  19. Z. Sitar, P.C. Yang, W. Liu, R. Schelsser, C.A. Wolden, and J.T. Prater, in Proceedings of the4th NIREM International Symposium on Advanced Materials (1997), p. 7

    Google Scholar 

  20. H. Li, D. Pugh, J. Lees, and J.A. Bland, Nature 4791, 865 (1961)

    Google Scholar 

  21. T. Tachibana, Y. Yokota, K. Miyata, K. Kobashi, and Y. Shintani, Diamond Rel. Mater. 6, 266 (1997)

    Article  Google Scholar 

  22. M. Tarutani, G. Zhou, Y. Takai, R. Shimizu, T. Tachibana, K. Kobashi, and Y. Shintani, Diamond Rel. Mater. 6, 272 (1997)

    Article  Google Scholar 

  23. S. Ojika, S. Yamashita, K. Kataoka, and T. Ishikura, Jpn. J. Appl. Phys. 32, L1681 (1993)

    Article  ADS  Google Scholar 

  24. H. Reiss, J. Appl. Phys. 39, 5045 (1968)

    Article  ADS  Google Scholar 

  25. K. Ohtsuka, S. Fukuda, K. Suzuki, and A. Sawabe, Jpn. J. Appl. Phys. 36, L1214 (1997)

    Article  ADS  Google Scholar 

  26. S. Koizumi, T. Murakami, T. Inuzuka and K. Suzuki, Appl. Phys. Lett. 57, 563 (1990)

    Article  ADS  Google Scholar 

  27. S. Koizumi and T. Inuzuka, Jpn. J. Appl. Phys. 32, 3920 (1993)

    Article  ADS  Google Scholar 

  28. C. Wild, P. Koidl, N. Herres, W. Müller-Sebert, and T. Eckermann, Electrochem. Soc. Proc. 91–8, 224 (1991)

    Google Scholar 

  29. C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Rel. Mater. 2, 158 (1993)

    Article  Google Scholar 

  30. T. Suesada, N. Nakamura, H. Nagasawa, and H. Kawarada, Jpn. J. Appl. Phys. 34, 4898 (1995)

    Article  ADS  Google Scholar 

  31. X. Jiang, K. Schiffmann, and C.-P. Klages, Phys. Rev. B 50, 8402 (1994)

    Article  ADS  Google Scholar 

  32. W. Kulisch, L. Ackermann, and B. Sobisch, Phys. Status Solidi A 154, 155 (1996)

    Article  ADS  Google Scholar 

  33. J. Gerber, S. Sattel, K. Jung, H. Ehrhardt, and J. Robertson, Diamond Rel. Mater. 4, 559 (1995)

    Article  Google Scholar 

  34. S. Sattel, J. Gerber, and H. Ehrhardt, Phys. Status Solidi A 154, 141 (1996)

    Article  ADS  Google Scholar 

  35. S.P. McGinnis, M.A. Kelly, and S.B. Hagström, Electrochem. Soc. Proc. 95–4, 73 (1995)

    Google Scholar 

  36. M. Tomellini, Ber. Bunsenges. Phys. Chem. 99, 838 (1995)

    Google Scholar 

  37. H. Maeda, M. Irie, T. Hino, K. Kusakabe, and S. Morooka, J. Mater. Res. 10, 158 (1995)

    Article  ADS  Google Scholar 

  38. S. Aoyama and N. Shibata, J. Ceram. Soc. Jpn. 102, 13 (1994) [in Japanese]

    Google Scholar 

  39. S. Yugo, T. Kanai, and T. Kimura, Diamond Rel. Mater. 1, 388 (1992)

    Article  Google Scholar 

  40. E. Schaller, O.M. Ktittel, and L. Schlapbach, Phys. Status Solidi A 153, 415 (1996)

    Article  ADS  Google Scholar 

  41. X. Jiang and C.L. Jia, Appl. Phys. Lett. 67, 1197 (1996)

    Article  ADS  Google Scholar 

  42. C.L. Jia, K. Urban, and X. Jiang, Phys. Rev. B 52, 5164 (1995)

    Article  ADS  Google Scholar 

  43. M. Stammler, R. Stöckel, L. Ley, M. Albrecht, and H.P. Strunk, Diamond Rel. Mater. 6, 747 (1997)

    Article  Google Scholar 

  44. P. Wurzinger, N. Fuchs, P. Pongratz, M. Schreck, R. Heßmer, and B. Stritzker, Diamond Rel. Mater. 6, 752 (1997)

    Article  Google Scholar 

  45. A. Van der Drift, Philips Res. Rep. 22, 267 (1967)

    Google Scholar 

  46. C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, and P. Koidl, Diamond Rel. Mater. 3, 373 (1994)

    Article  Google Scholar 

  47. R. Locher, C. Wild, N. Herres, D. Behr, and P. Koidl, Appl. Phys. Lett. 65, 34 (1994)

    Article  ADS  Google Scholar 

  48. H. Maeda, K. Ohtsubo, M. Me, N. Ohya, K. Kusakabe, and S. Morooka, J. Mater. Res. 10, 3115 (1995)

    Article  ADS  Google Scholar 

  49. D.R. Alfonso, S.H. Yang, and D.A. Drabold, Phys. Rev. B 50, 15369 (1994)

    Article  ADS  Google Scholar 

  50. M. Schreck and B. Stritzker, Phys. Status Solidi A 154, 197 (1996)

    Article  ADS  Google Scholar 

  51. H. Kawarada, C. Wild, N. Herres, and P. Koidl, Appl. Phys Lett. 72 (1998), April 13 issue

    Google Scholar 

  52. B.R. Stoner, personal communication

    Google Scholar 

  53. M. Hata, M. Tsuda, and S. Oikawa, Surf. Sci. 79/80, 255 (1994)

    Article  ADS  Google Scholar 

  54. K. Hayashi, S. Yamanaka, H. Okushi, and K. Kajimura, Appl. Phys. Lett. 68, 376 (1996)

    Article  ADS  Google Scholar 

  55. H. Kawarada, Surf. Sci. Rep. 26, 207 (1996)

    Article  ADS  Google Scholar 

  56. H. Kawarada, M. Aoki, and I. Itoh, Appl. Phys. Lett. 65, 1563 (1994)

    Article  ADS  Google Scholar 

  57. H. Kawarada, M. Itoh, and A. Hokazono, Jpn. J. Appl. Phys. A 35, L1165 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawarada, H. (1998). Heteroepitaxy and Highly Oriented Diamond Deposition. In: Dischler, B., Wild, C. (eds) Low-Pressure Synthetic Diamond. Springer Series in Materials Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71992-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71992-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71994-3

  • Online ISBN: 978-3-642-71992-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics