Advertisement

CVD Diamond for Ultraviolet and Particle Detectors

  • Richard B. Jackman
Part of the Springer Series in Materials Processing book series (SSMATERIALSPROC)

Abstract

Conventional solid-state photodetectors, such as those made using silicon, are typically diode structures operated with a reverse bias placed across them. Low dark currents result; carriers photo-generated in the depletion region form a drift current which is the basis for light detection. Light with an energy greater than the band gap of the material can be seen. Silicon has a 1.1 eV band gap and devices fabricated from this material therefore react to both ultra-violet and visible wavelengths. The high resistivity of diamond suggests that diode structures may not be needed to achieve low dark currents if this material were used for the fabrication of photodetectors. Metal/diamond/metal devices can be considered which simply rely upon photoconductivity for their operation; such a device could possess high gain, since many carriers may be able to flow around the detector circuit during the lifetime of a photo-generated electron-hole pair. The wide band gap (5.5 eV, 225 run) of diamond implies that this form of photodetector will be capable of detecting deep UV light while being essentially “blind” to visible wavelengths. This property is highly desirable; filtering conventional devices to make them visible blind significantly reduces their sensitivity to UV light. The physical and chemical robustness of diamond also suggests that such devices may be suitable for operation in hostile environments. Diamond can exhibit high carrier mobilities, saturated carrier velocities and electric field breakdown strength; these properties suggest that fast detectors may be realisable. Many industrial, military and environmental applications can thus be envisaged for diamond UV sensors. The emergence of commercially accessible thin-film diamond grown by chemical vapour deposition (CVD) has enabled reliable devices to be developed. In this chapter, the intrinsic and extrinsic photoconductivity of thin-film diamond is reviewed; the design, fabrication and performance of diamond UV photodetectors is then discussed, along with some of the uses for these devices. For some applications, it may be desirable to fabricate diamond photodiodes; the realisation of this type of device from p-type material is also addressed.

Keywords

Chemical Vapour Deposition Diamond Film External Quantum Efficiency Particle Detector Chemical Vapour Deposition Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 16.1
    J. Nahum and A. Halperin, J. Phys. Chem. Solids 23, 345 (1962)CrossRefADSGoogle Scholar
  2. 16.2
    P. Denham, E.C. Lightowlers, and P.J. Dean, Phys. Rev. 161, 762 (1967)CrossRefADSGoogle Scholar
  3. 16.3
    A.T. Collins and E.C. Lightowlers, Phys. Rev. 171, 843 (1968)CrossRefADSGoogle Scholar
  4. 16.4
    A.T. Collins, E.C. Lightowlers, and P.J. Dean, Phys. Rev. 183, 725 (1969)CrossRefADSGoogle Scholar
  5. 16.5
    E. Pereira and L. Santos, Diamond Rel. Mater. 4, 688 (1995)CrossRefGoogle Scholar
  6. 16.6
    L.A. Vermeiden and R.G. Fairer, Diamond Res. 1975, 18 (1975)Google Scholar
  7. 16.7
    A. Halperin and L.A. Vermeiden, J. Phys. Chem. Solids 43, 691 (1982)CrossRefADSGoogle Scholar
  8. 16.8
    L.A. Vermeiden and A. Halperin, J. Phys. Chem. Solids 45, 771 (1984)CrossRefADSGoogle Scholar
  9. 16.9
    R.G. Farrer and L.A. Vermeulen, J. Phys. C: Solid State Phys. 5, 2762 (1972)CrossRefADSGoogle Scholar
  10. 16.10
    See, for example, Diamond Films ’95, ed. P.K. Bachmann, IM. Buckley-Golder, J.T. Glass, and M. Kamo, Elsevier, Amsterdam (1996)Google Scholar
  11. 16.11
    L.S. Pan, D.R. Kania, S. Han, J.W. Ager, M. Landstrass, O.L. Landen, and P. Pianetta, Science 255, 830 (1992)CrossRefADSGoogle Scholar
  12. 16.12
    R. Vaitkus, T. Inushima, and S. Yamazaki, Appl. Phys. Lett. 62, 2384 (1993)CrossRefADSGoogle Scholar
  13. 16.13
    P. Gonon, A. Deneuville, E. Gheeraert, and F. Fontaine, Diamond Rel. Mater. 3, 836 (1994)CrossRefGoogle Scholar
  14. 16.14
    L. Allers and A.T. Collins, J. Appl. Phys. 77, 3879 (1995)CrossRefADSGoogle Scholar
  15. 16.15
    P. Gonon, A. Deneuville, F. Fontaine, and E. Gheeraert, J. Appl. Phys. 78, 6633 (1995)CrossRefADSGoogle Scholar
  16. 16.16
    S.C. Binari, M. Marchywka, D.A. Koolbeck, H.B. Dietrich, and D. Moses, Diamond Rel. Mater. 2, 1020 (1993)CrossRefGoogle Scholar
  17. 16.17
    R. Vaitkus, T. Inushima, and S. Yamazaki, Appl. Phys. Lett. 62, 2384 (1993)CrossRefADSGoogle Scholar
  18. 16.18
    P. Gonon, S. Prawer, Y. Boiko, and D.N. Jamieson, Diamond Rel. Mater. 6, 860 (1997)CrossRefGoogle Scholar
  19. 16.19
    R.D. McKeag, S.S.M. Chan, and R.B. Jackman, Appl. Phys. Lett. 67, 2117 (1995)CrossRefADSGoogle Scholar
  20. 16.20
    S.S.M. Chan, R.D. McKeag, M.D. Whitfield, and R.B. Jackman, Phys. Status Solidi A 154, 445 (1996)CrossRefADSGoogle Scholar
  21. 16.21
    M.D. Whitfield, R.D. McKeag, L.Y.S. Pang, S.S.M. Chan, and R.B. Jackman, Diamond Rel. Mater. 5, 829 (1996)CrossRefGoogle Scholar
  22. 16.22
    R.D.McKeag, M.D. Whitfield, S.S.M. Chan, L.Y.S. Pang, and R.B. Jackman, Mater. Res. Soc. Symp. Proc. 416, 419 (1996)CrossRefGoogle Scholar
  23. 16.23
    R.D. McKeag, R.D. Marshall, B. Baral, S.S.M. Chan, and R.B. Jackman, Diamond Rel. Mater. 6, 374 (1997)CrossRefGoogle Scholar
  24. 16.24
    R.D. McKeag and R.B. Jackman, Diamond Rel. Mater. 7, 513 (1998)CrossRefGoogle Scholar
  25. 16.25
    D. R. Kania, M.I. Landstrass, M.A. Piano, L.S. Pan, and S. Han, Diamond Rel. Mater. 2, 1012 (1993)CrossRefGoogle Scholar
  26. 16.26
    S. Salvatori, E. Pace, M.C. Rossi, and F. Galluzzi, Diamond Rel. Mater. 6, 361 (1997)CrossRefGoogle Scholar
  27. 16.27
    H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, and N. Shohata, Appl. Phys. Lett. 66, 460 (1995)CrossRefADSGoogle Scholar
  28. 16.28
    M. Marchywka, J.F. Hochedez, M.W. Geis, D.G. Socher, D. Moses, and R.T. Goldberg, Appl. Opt. 30, 5011 (1991)CrossRefADSGoogle Scholar
  29. 16.29
    M.D. Whitfield, S.S.M. Chan, and R.B. Jackman, Appl. Phys. Lett. 68, 290 (1996)CrossRefADSGoogle Scholar
  30. 16.30
    MI. Landstrass and K.V. Ravi, Appl. Phys. Lett. 55, 1391 (1989)CrossRefADSGoogle Scholar
  31. 16.31
    H. Shiomi, Y. Nishibayashi, and N. Fujimori, Jpn. J. Appl. Phys. 30, 1363 (1991)CrossRefADSGoogle Scholar
  32. 16.32
    T. Maki, S. Shikama, M. Komori, Y. Sakaguchi, K. Sakuta, and T. Kobayashi, Jpn. J. Appl. Phys. 31, 1363 (1992)CrossRefGoogle Scholar
  33. 16.33
    K. Hayashi, S. Yamanaka, H. Okushi, and K. Kajimura, Appl. Phys. Lett. 68, 376 (1996)CrossRefADSGoogle Scholar
  34. 16.34
    HJ. Looi, J.S. Foord, and R.B. Jackman, Appl. Phys. Lett. 72, 353 (1998)CrossRefADSGoogle Scholar
  35. 16.35
    H.J. Looi, L.Y.S. Pang, M.D. Whitfield, and R.B. Jackman, Diamond Rel. Mater. 7, 565 (1998)CrossRefGoogle Scholar
  36. 16.36
    Y. Wang, R.D. McKeag, H.J. Looi, and R.B. Jackman, Appl. Phys. Lett, (in press)Google Scholar
  37. 16.37
    H. Friedman, L.S. Birks, and H.P. Gauvin, Phys. Rev. 73, 186 (1948)CrossRefADSGoogle Scholar
  38. 16.38
    S. Dannefaer and D. Kerr, Diamond Rel. Mater. 1, 407 (1992)CrossRefGoogle Scholar
  39. 16.39
    G. Davies, S.C. Lawson, A.T. Collins, A. Mainwood, and SJ. Sharp, Phys. Rev. B46, 1357 (1992)Google Scholar
  40. 16.40
    D.W. Palmer, in Properties of Diamond, ed. G. Davies, INSPEC, London (1994)Google Scholar
  41. 16.41
    G. Davies, E.C. Lightowlers, R.C. Newman, and A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)CrossRefADSGoogle Scholar
  42. 16.42
    E.WJ. Mitchell, in Physical Properties of Diamond ed. R. Berman, Clarendon Press, Oxford (1965)Google Scholar
  43. 16.43
    J. Hassard, Nucl. Instrum. Methods A368, 217 (1995)ADSGoogle Scholar
  44. 16.44
    A. Mainwood, L. Allers, A.T. Collins, J.F. Hassard, A.S. Howard, A.R. Mahon, H.L. Parsons, T. Sumner, J.L. Collins, G.A. Scarsbrook, R.S. Sussmann, and A.J. Whitehead, J. Phys. D (Appl. Phys.) 28, 1279 (1995)CrossRefADSGoogle Scholar
  45. 16.45
    L. Allers and A. Mainwood, Diamond Rel. Mater. 7, 261 (1998)CrossRefGoogle Scholar
  46. 16.46
    C. Bauer and 46 other authors, Nucl. Instrum. Methods A367, 207 (1995)ADSGoogle Scholar
  47. 16.47
    EC. Chapman and F.C. Wright, Proc. Phys. Soc. A253, 385 (1959)Google Scholar
  48. 16.48
    P.J. Dean and J.C. Male, J. Phys. Chem. Solids 25, 311 (1964)CrossRefADSGoogle Scholar
  49. 16.49
    S.F. Kozlov, R. Stuck, M. Hage-Ali, and P. Siffert, IEEE Trans. Nucl. Sci. NS-22, 160 (1975)CrossRefADSGoogle Scholar
  50. 16.50
    S.F. Kozlov, E.A. Konorova, M.I. Krapivin, V.A. Nadein, and V.G. Yudina, IEEE Trans. Nucl. Sci. NS-24, 242 (1977)CrossRefADSGoogle Scholar
  51. 16.51
    C. Canali et al., Nucl. Instrum. Methods 160, 73 (1979)CrossRefADSGoogle Scholar
  52. 16.52
    PJ. Fallon et al., Appl. Radiat. Isot. 41, 35 (1990)CrossRefGoogle Scholar
  53. 16.53
    RJ. Keddy and T.L. Nam, Radiat. Phys. Chem. 41, 767 (1993)CrossRefADSGoogle Scholar
  54. 16.54
    J. Kaneko and M. Katagiri, Nucl. Instrum. Methods A383, 547 (1996)ADSGoogle Scholar
  55. 16.55
    F. Foulon, T. Pochet, E. Gheeraert, and A. Deneuville, Mater. Res. Soc. Symp. Proc. 339, 185 (1994)CrossRefGoogle Scholar
  56. 16.56
    F. Foulon, T. Pochet, E. Gheeraert, and A. Deneuville, IEEE Trans. Nucl. Sci. NS-41, 927 (1994)CrossRefADSGoogle Scholar
  57. 16.57
    C. Manfredotti et al., Nucl. Instram. Methods B93, 516 (1994)CrossRefADSGoogle Scholar
  58. 16.58
    T. Pochet, A. Brambilla, P. Bergonzo, F. Foulon, C. Jany, and A. Gicquel, Italian Physical Society, Conf. Proc. (Eurodiamond ’96) 52, 111 (1996)Google Scholar
  59. 16.59
    R.D. McKeag, R.D. Marshall, F. Foulon, P. Bergonzo, C. Jany, and R.B. Jackman, Appl. Phys. Lett, (in press)Google Scholar
  60. 16.60
    G.F. Knoll, Radiation Detection and Measurement, 2nd edn., Wiley, New York (1989), p. 259Google Scholar
  61. 16.61
    S.F. Kozlov, V.P. Katkov, and A.J. Krupman, IEEE Trans. Nucl. Sci. NS-22, 901 (1975)CrossRefADSGoogle Scholar
  62. 16.62
    S.F. Kozlov, A.V. Bachurin, S.S. Petrusev, and Y.P. Fedorovsky, IEEE Trans. Nucl. Sci. NS-24, 240 (1977)CrossRefADSGoogle Scholar
  63. 16.63
    S. Han, R.S. Wagner, J. Joseph, M.A. Piano, and M. D. Moyer, Rev. Sci. Instrum. 66, 5516 (1995)CrossRefADSGoogle Scholar
  64. 16.64
    V.D. Kovalchuck, V.I. Trotsik, and V.D. Kovallchuck, Nucl. Instrum. Methods A351, 590 (1994)ADSGoogle Scholar
  65. 16.65
    V.D. Kovalchuck, V.I. Trotsik, and V.D. Kovallchuck, Instr. Exp. Tech. 38, 14 (1995)Google Scholar
  66. 16.66
    M. Pillon, M. Angelone, and A.V. Krasilnikov, Nucl. Instrum. Methods B101, 473 (1995)ADSGoogle Scholar
  67. 16.67
    S.F. Kozlov, A.V. Krasilnikov, and V.M. Bagaev, IEEE Trans. NS-24, 235 (1977)ADSGoogle Scholar
  68. 16.68
    R.J. Maqueda, C.W. Barnes, S.S. Han, P.A. Staples, and R.S. Wagner, Rev. Sci. Instrum. 68, 624 (1997)CrossRefADSGoogle Scholar
  69. 16.69
    S. Croft, D.S. Bond, and N.P. Hawkes, Rev. Sci. Instrum. 64, 1418 (1993)CrossRefADSGoogle Scholar
  70. 16.70
    S.F. Kozlov, E.A. Konorova, Y.A. Kuznetsov, Y.A. Salikov, V.I. Redko, V.R. Grinberg, and M.L. Meilman, IEEE Trans. Nucl. Sci. NS-24, 235 (1977)CrossRefADSGoogle Scholar
  71. 16.71
    C.P. Beetz, B. Lincoln, D.R. Winn, K. Segall, M. Vasas, and D. Wall IEEE Trans. Nucl. Sci. NS-38, 107 (1991)CrossRefADSGoogle Scholar
  72. 16.72
    S. Han, R.S. Wagner, and E. Gullikson, Nucl. Instrum. Methods A380, 205 (1996)ADSGoogle Scholar
  73. 16.73
    F. Foulon, P. Bergonzo, C. Jany, A. Gicquel, and T. Pochet, Nucl. Instrum. Methods A380, 42 (1996)ADSGoogle Scholar
  74. 16.74
    C. Jany, F. Foulon, P. Bergonzo, A. Brambilla, A. Gicquel, and T. Pochet, Nucl. Instrum. Methods A380, 107 (1996)ADSGoogle Scholar
  75. 16.75
    C. White, Nucl. Instrum. Methods A351, 217 (1994)ADSGoogle Scholar
  76. 16.76
    F. Borchelt and 20 co-authors, Nucl. Instrum. Methods A354, 318 (1995)ADSGoogle Scholar
  77. 16.77
    C. Bauer and 43 co-authors, Nucl. Instrum. Methods A367, 202 (1995)ADSGoogle Scholar
  78. 16.78
    C. Bauer and 44 co-authors, Nucl. Instrum. Methods A380, 183 (1996)ADSGoogle Scholar
  79. 16.79
    C. Bauer and 48 co-authors, Nucl. Instrum. Methods A383, 64 (1996)ADSGoogle Scholar
  80. 16.80
    D.L. Jassby, G. Ascione, H.W. Kugel, A.L. Roquemore, T.W. Barcelo, and A. Kumar, Rev. Sci. Instrum. 68, 540 (1997)CrossRefADSGoogle Scholar
  81. 16.81
    R.B. Spielman, L.E. Ruggles, R.E. Pepping, S.P. Breeze, J.S. McGun, and K.W. Struve, Rev. Sci. Instr. 68, 782 (1997)CrossRefADSGoogle Scholar
  82. 16.82
    S.N. Rustgi and M.D. Fyre, Med. Phys. 22, 2117 (1995)CrossRefGoogle Scholar
  83. 16.83
    S. Vatnitsky, D. Miller, J. Siebers, and M. Moyers, Med. Phys. 22, 469 (1995)CrossRefGoogle Scholar
  84. 16.84
    S.N. Rustgi, Med. Phys. 22, 567 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Richard B. Jackman
    • 1
  1. 1.Electronic and Electrical EngineeringUniversity College LondonLondonUK

Personalised recommendations