Skip to main content

CVD-Diamond Sensors for Temperature and Pressure

  • Chapter
Low-Pressure Synthetic Diamond

Part of the book series: Springer Series in Materials Processing ((SSMATERIALSPROC))

Abstract

A study of the total available market for high-temperature electronics estimates that by the year 2005 roughly 4.7% of high-temperature applications will require devices operating at temperatures in excess of 300°C [13.1]. According to this study, the most important markets for high-temperature electronics are well logging, aerospace and automotive applications. Wide bandgap semiconductors such as diamond, SiC and EH-nitrides are attractive materials for temperatures beyond 300°C, at which conventional devices cannot operate. The figures of merit for diamond are superior to those of all other semiconductors and diamond devices could theoretically demonstrate outstanding performance [13.2]. So far, the lack of large-area single-crystalline substrates and the lack of a significant, controllable n-type conductivity has limited the number of possible devices. Diamond Schottky diodes and active components are discussed in Chap. 17. A detailed study concerning the industrial need for diamond in general is given in Chap. 18. Apart from its ability to operate at high temperatures, diamond is chemically inert against environmental influences and is radiation hard. It may have been that the first diamond sensor application was considered over 70 years ago, with evaluations of natural diamond stones for potential use as radiation detectors [13.3, 4]. With the advent and improvement of chemical vapour deposition of large-area diamond films, new applications become possible, in combination with the outstanding physical properties of diamond. An excellent review concerning passive diamond electronic devices in general was given by Dreifus [13.4]. Currently, thermistors and pressure sensors are being tested at the engineering prototype level. It is expected that diamond sensors for high-temperature applications will penetrate into the market in 1998 [13.1]. This chapter concentrates on two kinds of promising sensing devices; namely, temperature and pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AEA Technology pic, The World Market for High Temperature Electronics, A HITEN Report, AEA Technology pic (1997), pp. 1–53

    Google Scholar 

  2. K. Shenai, R.S. Scott, and BJ. Baliga, IEEE Trans. Electron Devices 36, 1811 (1989)

    Article  ADS  Google Scholar 

  3. J.E. Field, The Properties of Diamond. Academic Press, London (1979)

    Google Scholar 

  4. D.L. Dreifus, in Diamond: Electronic Properties and Applications, ed. L.S. Pan and D.R. Kania, Kluwer Academic Publishers, Boston (1995), pp. 371–441

    Google Scholar 

  5. J.D. Hunn, S.P. Withrow, C.W. White, R.E. Clausing, L. Heatherly and C.P. Christensen, Appl. Phys. Lett. 65, 3072 (1994)

    Article  ADS  Google Scholar 

  6. R. Locher, J. Wagner, F. Fuchs, C. Wild, P. Hiesinger, P. Gonon and P. Koidl, Mat. Sci. Eng. B29, 211 (1995)

    Google Scholar 

  7. F. Fontaine, C. Uzan-Saguy, B. Philosoph and R. Kalish, Appl. Phys. Lett. 68, 2264 (1996)

    Article  ADS  Google Scholar 

  8. W. Tsai, M. Delfmo, D. Hodul, M. Riaziat, L.Y. Ching, G. Reynolds and C.B. Cooper, IEEE Electron Devices Lett. 12, 157 (1991)

    Article  ADS  Google Scholar 

  9. P.R. Chalker and C. Johnston, Phys. Status Solidi A 154, 455 (1996)

    Article  ADS  Google Scholar 

  10. I. Taher, M. Aslam, M.A. Tamor, T.J. Potter and R.C. Elder, Sensors and Actuators A 45, 35 (1994)

    Article  Google Scholar 

  11. O. Dorsch, M. Werner, and E. Obermeier, Diamond Rel. Mater. 4, 456 (1995)

    Article  Google Scholar 

  12. O. Dorsch, M. Werner, and E. Obermeier, Diamond Rel. Mater. 1, 277 (1992)

    Article  Google Scholar 

  13. Y. Mori, H. Kawarada, and A. Hiraki, Appl. Phys. Lett. 58, 940 (1991)

    Article  ADS  Google Scholar 

  14. J. Shirafuji and T. Sugino, Diamond Rel. Mater. 5, 706 (1996)

    Article  Google Scholar 

  15. V. Venkatesan, K. Das, J.A. von Windheim, and M.W. Geis, Appl. Phys. Lett. 63, 1065 (1993)

    Article  ADS  Google Scholar 

  16. C.A. Mead and W.G. Spitzer, Phys. Rev. 134(3A), A713 (1964)

    Article  ADS  Google Scholar 

  17. M. Werner, O. Dorsch, H.U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, and P.R. Chalker, Appl. Phys. Lett. 64, 595 (1994)

    Article  ADS  Google Scholar 

  18. M. Werner, O. Dorsch, H.-U. Baerwind, E. Obermeier, C. Johnston, P.R. Chalker, and S. Romani, IEEE Trans. Electron Devices 42, 1344 (1995)

    Article  ADS  Google Scholar 

  19. A.Y.C. Yu, Solid State Electron. 13, 239 (1970)

    Article  ADS  Google Scholar 

  20. M. Werner, C. Johnston, P.R. Chalker, S. Romani, and I.M. Buckley-Golder, J. Appl. Phys. 79, 2535 (1996)

    Article  ADS  Google Scholar 

  21. T. Tachibana, B.E. Williams, and J.T. Glass, Phys. Rev. B 45, 11975 (1992)

    Article  ADS  Google Scholar 

  22. C.A. Hewett and J.R. Zeidler, Diamond Rel. Mater. 1, 688 (1992)

    Article  Google Scholar 

  23. M. Werner, R. Job, A. Denisenko, A. Zaitsev, W.R. Fahrner, C. Johnston, P.R. Chalker, and I.M. Buckley-Golder, Diamond Rel. Mater. 5, 723 (1996)

    Article  Google Scholar 

  24. S.N.G. Chu, A. Katz, T. Boone, P.M. Thomas, V.G. Riggs, W.C. Dautremmont-Smith, and W.D. Johnston, J. Appl. Phys. 67, 3754 (1990)

    Article  ADS  Google Scholar 

  25. V. Venkatesan, D.M. Malta, K. Das, and A.M. Belu, J. Appl. Phys. 74, 1179 (1993)

    Article  ADS  Google Scholar 

  26. H. Shiomi, Y. Nishibayashi, and N. Fujimori, Jpn. J. Appl. Phys. 30, 1363 (1991)

    Article  ADS  Google Scholar 

  27. A. Otsuki, J. Nakanishi, G. Kawaguchi, in Advances in New Diamond Science and Technology, ed. S. Saito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, M. Yoshikawa, MYU, Tokyo (1994), pp. 713–16

    Google Scholar 

  28. J.D. Wiley, J.H. Perepezko, J.E. Nordman, and K.-J. Guo, IEEE Trans. Industrial Electronics IE-29, 154 (1982)

    Google Scholar 

  29. D.M. Malta, J.A. von Windheim, H.A. Wynands, and B.A. Fox, J. Appl. Phys. 77, 1537 (1995)

    Article  ADS  Google Scholar 

  30. M. Werner, R. Locher, W. Kohly, D.S. Holmes, S. Klose, and H.J. Fecht, Diamond Rel. Mater. 6, 308 (1997)

    Article  Google Scholar 

  31. M. Werner, O. Dorsch, and E. Obermeier, Electron Technology 27, 83 (1994)

    Google Scholar 

  32. M. Werner, V. Schlichting, and E. Obermeier, Diamond Rel. Mater. 1, 669 (1992)

    Article  Google Scholar 

  33. K. Miyata, K. Saito, K. Nishimura, and K. Kobashi, Rev. Sci. Instrum. 65, 3799 (1994)

    Article  ADS  Google Scholar 

  34. J.A. von Windheim, D.L. Dreifus, B.A. Fox, J.S. Holmes, D.M. Malta, L.S. Piano, B.R. Stoner, and H.A. Wynands, HITEN News 8, 6 (1995)

    Google Scholar 

  35. L.F. Vereshchagin, K.K. Demidov, O.G. Revin, and V.N. Slesarev, Sov. Phys. Semicond. 8, 1581 (1975)

    Google Scholar 

  36. G.B. Rodgers and F.A. Raal, Rev. Sci. Instrum. 31, 663 (1960)

    Article  ADS  Google Scholar 

  37. M. Aslam, A. Masood, RJ. Fredricks, and M.A. Tamor, SPIE 1694, 184 (1992)

    Article  ADS  Google Scholar 

  38. N. Fujimori and H. Nakahata, New Diamond 2, 98 (1990)

    Google Scholar 

  39. J.P. Bade, S.R. Sahaida, B.R. Stoner, J.A. Windheim, J.T. Glass, K. Miyata, K. Nishimura, and K. Kobashi, Diamond Rel. Mater. 2, 816 (1993)

    Article  Google Scholar 

  40. M. Aslam, G.S. Yang, and A. Masood, Sensors and Actuators A 45, 131 (1994)

    Article  Google Scholar 

  41. R. Job, A.V. Denisenko, A.M. Zaitsev, M. Werner, A.A. Melnikov, and W.R. Fahrner, Mater. Res. Soc. 416, 249 (1996)

    Article  Google Scholar 

  42. P.M. Hall, Thin Solid Films 1, 277 (1967/1968)

    Google Scholar 

  43. S.M. Sze, Semiconductor Devices, Physics and Technology, John Wiley, New York (1985), pp. 470–71

    Google Scholar 

  44. R. Job, A.V. Denisenko, A.M. Zaitsev, A.A. Melnikov, M. Werner, and W.R. Fahrner, Thin Solid Films 290291, 165 (1996)

    Article  Google Scholar 

  45. B.L. Jones, Mater. Sci. Eng. B11, 149 (1992)

    Article  Google Scholar 

  46. G.S. Yang and D.M. Aslam, IEEE Electron Devices Lett. 17, 250 (1996)

    Article  ADS  Google Scholar 

  47. P. Gluche, R. Leuner, A. Vescan, W. Ebert, E.P. Hofer, and E. Kohn, presented at the HITEN Thematic Interest Group Meeting, Hilton Paris, France, 24 October 1996

    Google Scholar 

  48. T. Roppel, R. Ramesham, C. Ellis, and S.Y. Lee, Thin Solid Films 212, 56 (1992)

    Article  ADS  Google Scholar 

  49. P. Koidl, C. Wild, and E. Wörner, presented at the International Conference and Exhibition Micro Materials, Micro Mat ’97, Berlin, 16–18 April 1997

    Google Scholar 

  50. M. Aslam, I. Taher, A. Masood, M.A. Tamor, and T.J. Potter, Appl. Phys. Lett. 60, 2923 (1992)

    Article  ADS  Google Scholar 

  51. O. Dorsch, K. Holzner, M. Werner, E. Obermeier, R.E. Harper, C. Johnston, P.R. Chalker, and I.M. Buckley-Golder, Diamond Rel. Mater. 2, 1096 (1993)

    Article  Google Scholar 

  52. M. Aslam, I. Taher, M.A. Tamor, T.J. Potter, and R.C. Elder, in Proceedings of the 7th International Conference on Solid-State Sensors and Actuators, Transducers 93, Yokohama, Japan (1993), pp. 718–21

    Google Scholar 

  53. D.R. Wur, J.L. Davidson, W.P. Kang, and D. Kinser, in Proceedings of the 7th International Conference on Solid-State Sensors and Actuators, Transducers ’93, Yokohama, Japan (1993), pp. 722–5

    Google Scholar 

  54. J.L. Davidson, D.R. Wur, W.P. Kang, D. Kinser, J.P. Wang, and Y.C. Ling, in Advances in New Diamond Science and Technology, ed. S. Saito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yoshikawa, MYU, Tokyo (1994), pp. 693–6

    Google Scholar 

  55. D.R. Wur, J.L. Davidson, W.P. Kang, and D.L. Kinser, J. Micromech. Sys. 4, 34 (1995)

    Article  Google Scholar 

  56. S. Sahli and M. Aslam, in Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden (1995), pp. 592–5

    Google Scholar 

  57. J.L. Davidson and W.P. Kang, Mater. Res. Soc. 416, 397 (1996)

    Article  Google Scholar 

  58. M. Deguchi, M. Kitabatake, and T. Hirao, Diamond Rel. Mater. 5, 728 (1996)

    Article  Google Scholar 

  59. Y. Boiko, P. Gonon, S. Prawer, and D.N. Jamieson, in 7th European Conference on Diamond Diamond-like and Related Materials jointly with the ICNDST-5, Tours, France, 8–13 September 1996

    Google Scholar 

  60. Y. Kanda, Sensors and Actuators A 28, 83 (1991)

    Article  Google Scholar 

  61. M. Werner, S. Hein, and E. Obermeier, Diamond Rel. Mater. 2, 939 (1993)

    Article  Google Scholar 

  62. C.A. Klein and G.F. Cardinale, Diamond Rel. Mater. 2, 918 (1993)

    Article  Google Scholar 

  63. M.H. Grimsditch and A.K. Ramdas, Phys. Rev. B 11, 3139 (1975)

    Article  ADS  Google Scholar 

  64. X. Jiang, J.V. Harzer, B. Hillebrands, Ch. Wild, and P. Koidl, Appl. Phys. Lett. 59, 1055 (1991)

    Article  ADS  Google Scholar 

  65. M.P. D’Evelyn, D.E. Slutz, and B.E. Williams, Mater. Res. Soc. Symp. Proc. 383, 115 (1995)

    Article  Google Scholar 

  66. M. Werner, S. Klose, F. Szücs, Ch. Moelle, HJ. Fecht, C. Johnston, P.R. Chalker, and I.M. Buckley-Golder, Diamond Rel. Mater. 6, 344 (1997)

    Article  Google Scholar 

  67. Ch. Moelle, TU Berlin, personal communication

    Google Scholar 

  68. P. Gluche, M. Adamschik, A. Vescan, W. Ebert, A. Flöter, R. Zachai, and E. Kohn, submitted for publication in Diamond Rel. Mater.

    Google Scholar 

  69. J.S. Shor, L. Bernis, and A.D. Kurz, IEEE Trans. Electron Devices 41, 661 (1994)

    Article  ADS  Google Scholar 

  70. G. Zhao, E.M. Charlson, T. Stacy, J.M. Meese, G. Popovici, and M. Prelas, J. Appl. Phys. 73 1832 (1993)

    Article  ADS  Google Scholar 

  71. M. Werner, O. Dorsch, and E. Obermeier, Diamond Rel. Mater. 4, 873 (1995)

    Article  Google Scholar 

  72. P.R. Chalker, C. Johnston, J.A.A. Crossley, J. Ambrose, CF. Ayres, R.E. Harper, I.M. Buckley-Golder, and K. Kobashi, Diamond Rel. Mater. 2, 1100 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werner, M. (1998). CVD-Diamond Sensors for Temperature and Pressure. In: Dischler, B., Wild, C. (eds) Low-Pressure Synthetic Diamond. Springer Series in Materials Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71992-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71992-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71994-3

  • Online ISBN: 978-3-642-71992-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics