Skip to main content

Lymphocyte Development and Selection in Germinal Centers

  • Chapter
Somatic Diversification of Immune Responses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 229))

Abstract

Germinal centers (GCs) represent an intense focal proliferation of antigen-specific B and T lymphocytes within a reticulum of follicular dendritic cells (FDCs). Newly formed GCs contain oligoclonal populations of lymphocytes that interact by cell-to-cell contact (Jacob et al. 1991a; Liu et al. 1991b; MacLennan 1994; Han et al. 1995a; Kelsoe 1995; Ferguson et al. 1996). These collaborations are necessary for the maintenance of the GC reaction, efficient activation of V(D)J hypermutation and selection, and the generation of memory B cells (Han et al. 1995a). By supporting these processes, the GC microenvironment controls and directs major pathways of antigen-dependent lymphocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, Zhou X, Rothstein TL, Carroll MC (1996) Disruption of the Cr2 locus results in a reduction in B-la cells and in an impaired B cell response to T-dependent antigen. Immunity 4:251–264

    PubMed  CAS  Google Scholar 

  • Allen D, Simon T, Sablitzky F, Rajewsky K, Cumano A (1988) Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J 7:1995–2001

    PubMed  CAS  Google Scholar 

  • Arakawa H, Furusawa S, Ekino S, Yamagishi H (1996) Immunoglobulin gene hyperconversion ongoing in the chicken splenic germinal centers. EMBO J 15:2540–2546

    PubMed  CAS  Google Scholar 

  • Archer OK, Sutherland DER, Good RA (1963) Appendix of the rabbit: a homologue of the bursa in the chicken? Nature 200:337–339

    PubMed  CAS  Google Scholar 

  • Bachi J, Wabl M (1995) Do T-cells hypermutate? Nature 375:285–286

    CAS  Google Scholar 

  • Banks TA, Rouse BT, Kerley MK, et al (1995) Lymphotoxin-a-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 155:1685–1693

    PubMed  CAS  Google Scholar 

  • Becker RS, Knight KL (1990) Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell 63:987–997

    PubMed  CAS  Google Scholar 

  • Berek C, Milstein C (1987) Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 96:23–41

    PubMed  CAS  Google Scholar 

  • Berek C, Berger A, Apel M (1991) Maturation of the immune response in germinal centers. Cell 67:1121–1129

    PubMed  CAS  Google Scholar 

  • Berek C, Ziegner M (1993) The maturation of the immune response. Immunol Today 14:400–404

    PubMed  CAS  Google Scholar 

  • Betz AG, Neuberger MS, Milstein C (1993a) Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today 14:405–411

    PubMed  CAS  Google Scholar 

  • Betz AG, Rada C, Pannell R, Milstein C, Neuberger MS (1993b) Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci USA 90:2385–2388

    PubMed  CAS  Google Scholar 

  • Betz AG, Milstein C, Gonzalez-Fernandez A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248

    PubMed  CAS  Google Scholar 

  • Blier PR, Bothwell A (1987) A limited number of B cell lineages generates the heterogeneity of a secondary immune response. J Immunol 139:3996–4006

    PubMed  CAS  Google Scholar 

  • Blier PR, Bothwell ALM (1988) The immune response to the hapten NP in C57BL/6 mice: insights into the structure of the B cell repertoire. Immunol Rev 105:27–43

    PubMed  CAS  Google Scholar 

  • Bothwell ALM, Pasking M, Reth M, Imanishi-Kari T, Rajewsky K, Baltimore D (1981) Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a g2a variable region. Cell 24:625–637

    PubMed  CAS  Google Scholar 

  • Carsetti R, Köhler G, Lamers M (1995) Transitional B cells are the target of negative selection in the B cell compartment. J Exp Med 181:2129–2140

    PubMed  CAS  Google Scholar 

  • Casson LP, Manser T (1995a) Evaluation of loss and change of specificity resulting from random mutagenesis of an antibody VH region. J Immunol 155:5647–5654

    PubMed  CAS  Google Scholar 

  • Casson LP, Manser T (1995b) Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen. J Exp Med 182:743–750

    PubMed  CAS  Google Scholar 

  • Chen C, Roberts VA, Rittenberg MB (1992) Generation and analysis of random point mutations in an antibody CDR2 sequence: many mutated antibodies lose their ability to bind antigen. J Exp Med 176:855–866

    PubMed  CAS  Google Scholar 

  • Chen C, Roberts VA, Stevens S, Brown M, Stenzel-Poore MP, Rittenberg MB (1995) Enhancement and destruction of antibody function by somatic mutation: unequal occurrence is controlled by V gene combinatorial associations. EMBO J 14:2784–2794

    PubMed  CAS  Google Scholar 

  • Crews S, Griffin J, Huang H, Calame K, Hood L (1981) A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell 25:59–66

    PubMed  CAS  Google Scholar 

  • Croix D, Ahearn JM, Roseng AM, Han S, Kelsoe G, Ma M, Carroll M (1996) Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J Exp Med 183:1857–1864

    PubMed  CAS  Google Scholar 

  • Decker DJ, Linton PJ, Jacobs SN, Biery M, Gingeras TR, Klinman NR (1995) Defining subsets of naïve and memory B cells based on their ability to somatically mutate in vitro. Immunity 2:195–203

    PubMed  CAS  Google Scholar 

  • Dénepoux S, Razanajoana D, Blanchard D, Meffre G, Capra JD, Banchereau J, Lebecque S (1997) Induction of somatic mutation in a human B cell line in vitro. Immunity 6:35–46

    PubMed  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, et al (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707

    PubMed  Google Scholar 

  • Diamond B, Scharff MD (1984) Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci USA 81:5841–5844

    PubMed  CAS  Google Scholar 

  • Ferguson SE, Han S, Kelsoe G, Thompson CB (1996) CD28 is required for germinal center formation. J Immunol 156:4576–4581

    PubMed  CAS  Google Scholar 

  • Fischer MB, Ma M, Goerg S, Zhou X, Finco O, Han S, Kelsoe G, Rothstein T, Kummer E, Rosen FS, Carroll M (1996) Regulation of B cell responses to a T-dependent antigen by the classical pathway of complement. J Immunol 157:549–556

    PubMed  CAS  Google Scholar 

  • Ford JE, Mcheyzer-Williams MG, Lieber MR (1994a) Chimeric molecules created by gene amplification interfere with the analysis of somatic hypermutation of murine immunoglobulin genes. Gene 142:279–283

    PubMed  CAS  Google Scholar 

  • Ford JE, Mcheyzer-Williams MG, Lieber MR (1994b) Analysis of individual immunoglobulin lambda light chain genes amplified from single cells is inconsistent with variable region gene conversion in germinal-center B cell somatic mutation. Eur J Immunol 24:1816–1822

    PubMed  CAS  Google Scholar 

  • Fuller KA, Kanagawa O, Nahm MH (1993) T cells within germinal centers are specific for the immunizing antigen. J Immunol 151:4505–4512

    PubMed  CAS  Google Scholar 

  • Fuschiotli P, Fitts MG, Pospisil R, Weinstein PD, Mage RG (1997) RAG-1 and RAG-2 in developing rabbit appendix subpopulations. J Immunol 158:55–64

    Google Scholar 

  • Gay D, Saunders T, Camper S, Weigert M (1993) Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 177:999–1008

    PubMed  CAS  Google Scholar 

  • Green NS, Rabinowitz JL, Zhu M, Kobrin BJ, Scharff MD (1995) Immunoglobulin variable region hypermutation in hybrids derived from a pre-B- and a myeloma cell line. Proc Natl Acad Sci USA 92:6304–6308

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Arila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    PubMed  CAS  Google Scholar 

  • Griffiths GM, Berek C, Kaartinen M, Milstein C (1984) Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312:271–275

    PubMed  CAS  Google Scholar 

  • Gu H, Tarlinton D, Müller W, Rajewsky K, Förster I (1991) Most peripheral B cells in mice are ligand selected. J Exp Med 173:1357–1371

    PubMed  CAS  Google Scholar 

  • Han S, Hathcock K, Zheng B, Kepler T, Hodes R, Kelsoe G (1995a) Cellular interaction in germinal centers. The roles of CD40-ligand and B7–2 in established germinal centers. J Immunol 155:556–567

    PubMed  CAS  Google Scholar 

  • Han S, Zheng B, Dal Porto J, Kelsoe G (1995b) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self tolerance. J Exp Med 182:1635–1644

    PubMed  CAS  Google Scholar 

  • Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G (1996) Neoteny in lymphocytes: Rag-1 and Rag-2 expression in germinal center B cells. Science 274:2094–2097

    PubMed  CAS  Google Scholar 

  • Han S, Dillon SR, Zheng B, Shimoda M, Schüssel MS, Kelsoe G (1997) V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 278:301–305

    PubMed  CAS  Google Scholar 

  • Han S, Zheng B, Takahashi Y, Kelsoe G (1997) Distinctive characteristics of germinal center B cells. Semin Immunol 9 (to be published)

    Google Scholar 

  • Hardy RR, Carmack CE, Shinton SA, Kemp JD, Haya Kawa K (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173:1213–1225

    PubMed  CAS  Google Scholar 

  • Hikida M, Mori M, Takai T, Tomochika K, Hamatani K, Ohmori H (1996) Reexpression of Rag-1 and Rag-2 genes in activated mature mouse B cells. Science 274:2092–2094

    PubMed  CAS  Google Scholar 

  • Hinds-Frey KR, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178:815–824

    PubMed  CAS  Google Scholar 

  • Jacob J, Kassir R, Kelsoe G (1991a) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 173:1165–1175

    PubMed  CAS  Google Scholar 

  • Jacob J, Kelsoe G, Rajewsky K, Weiss U (1991b) Intraclonal generation of antibody mutants in germinal centers. Nature 354:389–392

    PubMed  CAS  Google Scholar 

  • Jacob J, Kelsoe G (1992) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 176:679–687

    PubMed  CAS  Google Scholar 

  • Jacob J, Przylepa J, Miller C, Kelsoe G (1993) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. III. The kinetics of V-region mutation and selection in germinal center B cells. J Exp Med 178:1293–1307

    PubMed  CAS  Google Scholar 

  • Kelsoe G (1995) In situ studies of the germinal center reaction. Adv Immunol 60:267–288

    PubMed  CAS  Google Scholar 

  • Kelsoe G (1996) Life and death in germinal centers (redux). Immunity 4:107–110

    PubMed  CAS  Google Scholar 

  • Kelsoe G, Zheng B (1993) Sites of B-cell activation in vivo. Curr Opin Immunol 5:418–422

    PubMed  CAS  Google Scholar 

  • Kelsoe G, Zheng B, Kepler TB (1995) Do T-cells hypermutate? Nature 375:286 (reply to Bachi and Wabl)

    CAS  Google Scholar 

  • Kimoto H, Nagaoka H, Adachi Y, et al (1997) Accumulation of somatic hypermutation and antigen-driven selection in rapidly cycling surface Ig+ germinal center (GC) B cells which occupy GC at high frequency during the primary anti-hapten response in mice. Eur J Immunol 27:268–279

    PubMed  CAS  Google Scholar 

  • Klinman NR (1996) In vitro analysis of the generation and propagation of memory B cells. Immunol Rev 150:91–111

    PubMed  CAS  Google Scholar 

  • Knight KL, Crane MA (1995) Development of the antibody repertoire in rabbits. Ann N Y Acad Sci 764:198–206

    PubMed  CAS  Google Scholar 

  • Kolchanov NA, Solovyov VV, Rogozin IB (1987) Peculiarities of immunoglobulingene structures as a basis for somatic mutation emergence. FEBS Lett 214:87–91

    PubMed  CAS  Google Scholar 

  • Linton PJ, Decker DJ, Klinman NR (1989) Primary antibody forming cells and secondary B cells are generated from separate precursor cell subpopulations. Cell 59:1049–1059

    Google Scholar 

  • Linton PJ, Rudie A, Klinman NR (1991) Tolerance susceptibility of newly generating memory B cells. J Immunol 146:4099–4104

    PubMed  CAS  Google Scholar 

  • Linton PJ, Lo D, Lai L, Thorbecke GJ, Klinman NR (1992) Among naive precursor cell subpopulations only progenitors of memory B cells originate germinal centers. Eur J Immunol 22:1293–1297

    PubMed  CAS  Google Scholar 

  • Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan ICM (1989) Mechanisms of antigen-driven selection in germinal centres. Nature 342:929–931

    PubMed  CAS  Google Scholar 

  • Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan ICM (1991b) Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol 21:2951–2962

    PubMed  CAS  Google Scholar 

  • Liu YJ, Mason DY, Johnson GD, Abbot S, Gregory CD, Hardie DL, Gordon J, MacLennan ICM (1991a) Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol 21:1905–1910

    PubMed  CAS  Google Scholar 

  • Liu ZG, Smith SW, McLaughlin KA, Schwartz LM, Osborne BA (1994) Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate early gene Nur77. Nature 367:281–284

    PubMed  CAS  Google Scholar 

  • MacLennan ICM (1994) Germinal centers. Annu Rev Immunol 12:117–139

    PubMed  CAS  Google Scholar 

  • Malipiero UV, Levy NS, Gearhart PJ (1987) Somatic mutation in antiphosphorylcholine antibodies. Immunol Rev 96:59–74

    PubMed  CAS  Google Scholar 

  • Manser T, Huang SY, Gefter M (1984) Influence of clonal selection on the expression of immunoglobulin variable region genes. Science 226:1283–1288

    PubMed  CAS  Google Scholar 

  • Manser T, Wysocki LJ, Margolies MN, Gefter ML (1987) Evolution of antibody variable region structure during the immune response. Immunol Rev 96:141–162

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Lo SF, Carruthers CJ, Min J, Mariathasan S, Huang G, Plas DR, Martin SM, Geha RS, Nahm MN, Chaplin DD (1996) Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382:462–466

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams MG, Nossal GJ, Lalor PA (1991) Molecular characterization of single memory B cells. Nature 350:502–505

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams MG, McLean MJ, Lalor PA, Nossal GJV (1993) Antigen-driven B cell Differentiation in vivo. J Exp Med 178:295–307

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams MG, Davis MM (1995) Antigen-specific development of primary and memory T cells in vivo. Science 268:106–111

    PubMed  CAS  Google Scholar 

  • Miller C, Kelsoe G (1995) Immunoglobulin VH hypermutation is absent in the germinal centers of aged mice. J Immunol 155:3377–3384

    PubMed  CAS  Google Scholar 

  • Miller C, Stedra J, Kelsoe G, Cerny J (1995) Facultative role of germinal centers and T cells in the somatic diversification of IgVH genes. J Exp Med 181:1319–1331

    PubMed  CAS  Google Scholar 

  • Monroe JG (1996) Tolerance sensitivity of immature-stage B cells. Can developmentally regulated B cell antigen receptor (BCR) signal transduction play a role? J Immunol 156:2657–2666

    PubMed  CAS  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    PubMed  CAS  Google Scholar 

  • Nemazee DA, Bürki K (1989) Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class 1 antibody genes. Nature 337:562–566

    PubMed  CAS  Google Scholar 

  • Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD (1994) Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 180:329–339

    PubMed  CAS  Google Scholar 

  • Pulendran B, Kannourakis G, Nouri S, Smith KGC, Nossal GJV (1995) Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375:331–334

    PubMed  CAS  Google Scholar 

  • Radic MZ, Erickson J, Litwin S, Weigert M (1993) B lymphocytes may escape tolerance by revising their antigen receptors. J Exp Med 177:1165–1173

    PubMed  CAS  Google Scholar 

  • Radic MZ, Zouali M (1996) Receptor editing, immune diversification, and self-tolerance. Immunity 5:505–511

    PubMed  CAS  Google Scholar 

  • Rajewsky K, Forster L, Cumano A (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238:1088–1094

    PubMed  CAS  Google Scholar 

  • Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Anquez V, Grimal H, Weill JC (1987) A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48:379–388

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Bertocci B, Dalian A, Weill JC (1994) Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv Immunol 57:353–378

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Garcia C, Hein WR, Weill JC (1995) Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell 80:115–125

    PubMed  CAS  Google Scholar 

  • Rogozin IB, Kolchanov NA (1992) Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta 1171:11–18

    PubMed  CAS  Google Scholar 

  • Rose ML, Birbeck MS, Wallis VJ, Forrester JA, Davies AJ (1980) Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature 284:364–366

    PubMed  CAS  Google Scholar 

  • Schroder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 93:221–225

    PubMed  CAS  Google Scholar 

  • Sharon J, Gefter ML, Wysocki LJ, Margolies MN (1989) Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol 142:596–601

    PubMed  CAS  Google Scholar 

  • Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB. Rothstein TL, Weigert MG (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811

    PubMed  CAS  Google Scholar 

  • Shokat KM, Goodnow CC (1995) Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375:334–338

    PubMed  CAS  Google Scholar 

  • Siekevitz M, Kocks C, Rajewsky K, Dildrop R (1987) Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48:757–770

    PubMed  CAS  Google Scholar 

  • Smith KGC, Hewitson TD, Nossal GJV, Tarlinton DM (1996) The phenotype and fate of antibody-forming cells of the splenic foci. Eur J Immunol 26:444–448

    PubMed  CAS  Google Scholar 

  • Straus-Schoenberger J, Karr R, Chaplin D (1996) Markedly impaired humoral immune response in mice decifient in complement receptor 1 and 2. Proc Natl Acad Sci USA 93:3357–3361

    Google Scholar 

  • Tew JG, Kosco MH, Burton GF, Szakal AK (1990) Follicular dendritic cells as accessory cells. Immunol Rev 117:185–211

    PubMed  CAS  Google Scholar 

  • Texido G, Jacobs H, Meiering M, Kuhn R, Roes J, Muller W, Gilfillan T, Fugiwara H, Kikutani H, Yoshida N, Amakura R, Benoist C, Mathis D, Kishimoto T, Mak TW, Rajewsky K (1996) Somatic hypermutation occurs in B cells of terminal deoxynucleotidyl transferase-, CD23-, interleukin-4-,IgD-, and CD30-deficient mouse mutants. Eur J Immunol 26:1966–1969

    PubMed  CAS  Google Scholar 

  • Thompson CB, Neiman PE (1987) Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48:369–378

    PubMed  CAS  Google Scholar 

  • Tiegs SL, Russell DM, Nemazee D (1993) Receptor editing in self-reactive bone marrow B cells. J Exp Med 177:1009–1620

    PubMed  CAS  Google Scholar 

  • Valitutti S, Müller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151

    PubMed  CAS  Google Scholar 

  • Van Rooijen N, Claasen E, Eikelenboom P (1996) Is there a single differentiation pathway for all antibody-forming cells in the spleen? Immunol Today 7:193–195

    Google Scholar 

  • Vora KA, Manser T (1995) Altering the antibody repertoire via transgene homologous recombination: evidence for global and clone-autonomous regulation of antigen-driven B cell differentiation. J Exp Med 181:271–281

    PubMed  CAS  Google Scholar 

  • Wagner SD, Milstein C, Neuberger MS (1995) Codon bias targets mutation. Nature 376:732

    PubMed  CAS  Google Scholar 

  • Wagner SD, Neuberger MS (1996) Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol 14:441–458

    PubMed  CAS  Google Scholar 

  • Weigert MG, Cesari IM, Yonkovich SJ, Colin M (1970) Variability in the lambda light chain sequences of mouse antibody. Nature 228:1045–1047

    PubMed  CAS  Google Scholar 

  • Weinstein PD, Anderson AO, Mage RG (1994) Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. Immunity 1:647–659

    PubMed  CAS  Google Scholar 

  • Weiss U, Rajewsky K (1990) The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J Exp Med 172:1681–1689

    PubMed  CAS  Google Scholar 

  • Wilson M, Hsu E, Marcuz A, Courtet M, Du Pasquier L, Steinberg C (1992) What limits affinity maturation of antibodies in Xenopus, the rate of somatic mutation or the ability to select mutants? EMBO J 11:4337–4347

    PubMed  CAS  Google Scholar 

  • Woronicz JD, Calnan B, Ngo V, Winoto A (1994) Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 67:277–281

    Google Scholar 

  • Wysocki L, Manser T, Gefter ML (1986) Somatic evolution of variable region structures during an immune response. Proc Natl Acad Sci USA 83:1847–1851

    PubMed  CAS  Google Scholar 

  • Yang X, Stedra J, Cerny J (1996) Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J Exp Med 183:959–970

    PubMed  CAS  Google Scholar 

  • Yélamos J, Klix N, Goyenechea B, et al (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376:225–229

    PubMed  Google Scholar 

  • Zheng B, Xue W, Kelsoe G (1994) Locus-specific somatic hypermutation in germinal centre T cells. Nature 372:556–559

    PubMed  CAS  Google Scholar 

  • Zheng B, Han S, Kelsoe G (1996a) T helper cells in murine germinal centers are antigen-specific emigrants that down-regulate Thy-l. J Exp Med 184:1083–1091

    PubMed  CAS  Google Scholar 

  • Zheng B, Han S, Zhu Q, Goldsby R, Kelsoe G (1996b) Alternative pathways for the antigen-specific selection of peripheral T cells. Nature 384:263–266

    PubMed  CAS  Google Scholar 

  • Zhu M, Green NS, Rabinowitz JL, Scharff MD (1996) Differential V region mutation of two transfected Ig genes and their interaction in cultured B cell lines. EMBO J 15:2738–2747

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Przylepa, J., Himes, C., Kelsoe, G. (1998). Lymphocyte Development and Selection in Germinal Centers. In: Kelsoe, G., Flajnik, M.F. (eds) Somatic Diversification of Immune Responses. Current Topics in Microbiology and Immunology, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71984-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71984-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71986-8

  • Online ISBN: 978-3-642-71984-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics