Skip to main content

Somatic Mutation in Ectothermic Vertebrates: Musings on Selection and Origins

  • Chapter
Somatic Diversification of Immune Responses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 229))

Abstract

The antibody responses of ectothermic (cold blooded) vertebrates do not mature in the same fashion as responses analyzed in mice. This has been demonstrated by either a total lack of affinity maturation in some species or a much lower rise in affinity in others (reviewed in Du Pasquier 1993). When it was determined that all ectotherms studied possess large numbers of V(D)J genes, and that rearrangement processes to establish Ig repertoires are essentially the same as those in mouse and human, it was theorized that poor immune responses in ectotherms could be explained by a suboptimal utilization of somatic mutants (Du Pasquier 1982, 1993). Another interpretation was that somatic mutation in the immune system arose late in vertebrate evolution, after emergence of the rearrangement process that generates functional V genes (Matsunaga 1985). Recent studies in cartilaginous fish (horned shark and nurse shark) and an amphibian (Xenopus) have shown conclusively that in addition to all of the molecular building blocks of the adaptive immune system, somatic hypermutation in immune-related genes is present in all jawed vertebrates. In this chapter we review the evidence for mutation in ectotherms, debate its importance to the immune system of these creatures, and speculate on its origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson M, Amemiya C, Luer C, Litman R, Rast J, Nimura Y, Litman G (1994) Complete genomic sequence and patterns of transcription of a member of an unusual family of closely related, chromosomally dispersed Ig gene clusters in Raja. Int Immunol 6:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Anderson MK, Shamblott MJ, Litman RT, Litman GW (1995) Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity. J Exp Med 182:109–119

    Article  PubMed  CAS  Google Scholar 

  • Bachi J, Wabl M (1996) An immunoglobulin mutator that targets G.C base pairs. Proc Natl Acad Sci USA 93:851–855

    Article  Google Scholar 

  • Betz AG, Neuberger MS, Milstein C (1993) Discriminating intrinsic and anti-selected mutational hot-spots in immunoglobulin V genes. Immunol Today 14:405–411

    Article  PubMed  CAS  Google Scholar 

  • Brandt DC, Griessen M, Du Pasquier L, Jaton JC (1980) Antibody diversity in amphibians: evidence for inheritance of idiotypic specificities in isogeneic Xenopus. Eur J Immunol 10:731–736

    Article  PubMed  CAS  Google Scholar 

  • Borgulya P, Kishi H, Uematsu Y, von Boehmer H. (1992) Exclusion and inclusion of a and b T cell receptor alleles. Cell 69:529–537

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Radic MZ, Erikson J, Camper SA, Litwin S, Hardy RR, Weigert M (1994) Deletion and editing of B cells that express antibodies to DNA. J Immunol 152:1970–1982

    PubMed  CAS  Google Scholar 

  • Clem LW, Leslie GA (1971) Production of 19S IgM antibodies with restricted heterogeneity from sharks. Proc Natl Acad Sci USA 68:139–143

    Article  PubMed  CAS  Google Scholar 

  • Desmyter A, Transue TR, Ghahrondi MA, Thi M-HD, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Struct Biol 3:803–811

    Article  PubMed  CAS  Google Scholar 

  • Du Pasquier L (1982) Antibody diversity in lower vertebrates — why is it so restricted? Nature 276:311–313

    Article  Google Scholar 

  • Du Pasquier L (1993) Phylogeny of B-cell development. Curr Opin Immunol 5:185–193

    Article  PubMed  Google Scholar 

  • Du Pasquier L, Haimovich J (1976) The antibody response during amphibian ontogeny. Immunogenetics 3:381–391

    Article  Google Scholar 

  • Du Pasquier L, Robert J (1992) In vitro growth of thymic tumor cell lines from Xenopus. Dev Immunol 2:295–307

    Article  PubMed  Google Scholar 

  • Gallinari P, Jiricny J (1996) A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383:735–738

    Article  PubMed  CAS  Google Scholar 

  • Green NS, Rabinowitz JL, Zhu M, Kobrin BJ, Scharff MD (1995) Immunoglobulin variable region hypermutation in hybrids derived from a pre-B- and a myeloma cell line. Proc Natl Acad Sci USA 92:6304–630

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Hughes AL, Guo J, Avila D, McKinney EC, Flajnik MF (1996) A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 26:1112–1129

    Article  Google Scholar 

  • Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G (1996) Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274:2094–2097

    Article  PubMed  CAS  Google Scholar 

  • Hinds KR, Litman GW (1986) Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320:546–549

    Article  PubMed  CAS  Google Scholar 

  • Hinds-Frey KR, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178:815–824

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90–92

    Article  PubMed  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1987) Extensive families of constant region genes in a phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity. Proc Natl Acad Sci USA 84:5868–5872

    Article  PubMed  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1988) Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7:1979–1988

    PubMed  CAS  Google Scholar 

  • Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327:77–79

    Article  PubMed  CAS  Google Scholar 

  • Lebecque SG, Gearhart PJ (1990) Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is ~1 kb from V(D)J gene. J Exp Med 172:1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19

    Article  PubMed  CAS  Google Scholar 

  • MacLennan IC (1994) Somatic mutation: from the dark zone to the light. Curr Biol 4:70–72

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä O, Litman GW (1980) Lack of heterogeneity in anti-hapten antibodies of a phylogenetically primitive shark. Nature 287:639–641

    Article  PubMed  Google Scholar 

  • Matsunaga T (1985) Evolution of antibody repertoire-somatic mutation as a latecomer. Dev Comp Immunol 9:585–596

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Lo SF, Carruthers CJ, Min J, Mariathasan S, Huang G, Plas DR, Martin SM, Geha RS, Nahm MH, Chaplin DD (1996) Affinity maturation without germinal centers in lymphotoxin-alpha-deficient mice. Nature 382:462–466

    Article  PubMed  CAS  Google Scholar 

  • Mussmann R, Wilson M, Marcuz A, Courtet M, Du Pasquier L (1996) Membrane exon sequences of the three Xenopus Ig classes explain the evolutionary origin of mammalian isotypes. Eur J Immunol 26:409–414

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (1995) Somatic mutation favors the evolution of diploidy. Genetics 139:1441–1447

    PubMed  CAS  Google Scholar 

  • Radic MZ, Zouali M (1996) Receptor editing, immune diversification, and self tolerance. Immunity 5:505–511

    Article  PubMed  CAS  Google Scholar 

  • Reynaud C-A, Mackay CR, Müller RG, Weill J-C (1991a) Somatic generation of diversity in a mammalian primary lymphoid organ: the sheep ileal Peyer’s patches. Cell 64:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Rickert RC, Rajewsky K, Roes J (1995) Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376:352–355

    Article  PubMed  CAS  Google Scholar 

  • Schwager J, Bürckert N, Courtet M, Du Pasquier L (1989) Genetic basis for the antibody repertoire in Xenopus. Analysis of the VH diversity. EMBO J 8:2989–3001

    PubMed  CAS  Google Scholar 

  • Schwager J, Bürckert N, Courtet M, Du Pasquier L (1991) The ontogeny of diversification at the immunoglobulin heavy chain locus in Xenopus. EMBO J 10:2451–2470

    Google Scholar 

  • Shlomchik M, Mascelli M, Shan H, Radic MZ, Pisetsky D, Marshak-Rothenstein A, Weigert M (1990) Anti DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 171:265–292

    Article  PubMed  CAS  Google Scholar 

  • Tiegs SL, Russell DM, Nemazee D (1993) Receptor editing in self-reactive bone marrow B cells. J Exp Med 177:1009–1020

    Article  PubMed  CAS  Google Scholar 

  • Voss EW, Watt RH (1977) Comparison of the microenvironment of chicken and rabbit antibody active site. Adv Exp Biol Med 88:391–401

    CAS  Google Scholar 

  • Wagner SD, Neuberger MS (1996) Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol 14:441–457

    Article  PubMed  CAS  Google Scholar 

  • Wagner SD, Milstein C, Neuberger MS (1995) Codon bias targets mutation. Nature 376:732

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Marcuz A, Courtet M, Du Pasquier L (1992a) Sequences of C mu and the VH1 family in LG7, a clonable strain of Xenopus, homozygous for the immunoglobulin loci. Dev Immunol 3:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Hsu E, Marcuz A, Courtet M, Du Pasquier L, Steinberg C (1992b) What limits affinity maturation of antibodies in Xenopus — the rate of somatic mutation or the ability to select mutants? EMBO J 11:4337–4347

    PubMed  CAS  Google Scholar 

  • Wilson M, Marcuz A, Du Pasquier L (1995) Somatic mutations during an immune response in Xenopus tadpoles. Dev Immunol 4:227–234

    Article  PubMed  CAS  Google Scholar 

  • Yelamos J, Klix N, Goyenechea B, Lonzo F, Chui YL, Gonzales Fernandes A, Pannell R, Neuberger MS, Milstein C (1996) Targeting of non Ig sequences in place of the V segment by somatic hyper-mutation. Nature 376:225–229

    Article  Google Scholar 

  • Zapata AJ, Torroba M, Vicente A, Varas A, Sacedone R, Jimenez E (1995) The relevance of cell microenvironment for the appearance of lymphohaemopietic tissues in primitive vertebrates. Histol Histopathol 10:761–778

    PubMed  CAS  Google Scholar 

  • Zapata AG, Torroba M, Sacedon R, Varas A, Vicente A (1996a) Structure of the lymphoid organs of elasmobranchs. J Exp Zool 275:125–143

    Article  Google Scholar 

  • Zapata AG, Chiba A, Varas A (1996b) Cells and tissues of the immune system of fish. Fish Physiology 15:1–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Du Pasquier, L., Wilson, M., Greenberg, A.S., Flajnik, M.F. (1998). Somatic Mutation in Ectothermic Vertebrates: Musings on Selection and Origins. In: Kelsoe, G., Flajnik, M.F. (eds) Somatic Diversification of Immune Responses. Current Topics in Microbiology and Immunology, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71984-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71984-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71986-8

  • Online ISBN: 978-3-642-71984-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics