Advertisement

Coulomb Blockade

  • A. Kawabata
Part of the NanoScience and Technology book series (NANO)

Abstract

Mesoscopic physics has started with the study of various kinds of interference effects of the electronic wave, but the features of electrons as a particle also show up in various interesting phenomena. For example, consider a small tunnel junction connected to an electrical source of constant voltage V (Fig. 1.6.1a). Suppose an electron tunnels from one electrode to the other through the insulator between them. If the junction is very small, its capacitance is small too, unless the insulator between the electrodes is extremely thin. Then the charging energy e 2/2C can be as large as temperature times the Boltzmann constant, and is not negligible. Therefore, the tunneling is not realized unless the voltage V is large enough for this energy to be compensated by the energy eV.

Keywords

Fermi Energy Charge Energy Differential Resistance Coulomb Blockade Mesoscopic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Delsing, T. Claeson, K.K. Likharev, and L.S. Kuzmin, Phys. Rev. B 42, 7439 (1990)CrossRefGoogle Scholar
  2. 2.
    M.H. Devoret and H. Grabert, Single Charge Tunneling. Coulomb Blockade Phenomena inNanostructures (Proceedings of a NATO Advanced Study Institute, Les Houches, 1991 (Plenum, London, 1992 ), p. 1Google Scholar
  3. 3.
    K.K. Likharev and A.B. Zorin J. Low Temp. Phys. 59, 347 (1985)CrossRefGoogle Scholar
  4. 4.
    B.D. Josephson, Phys. Lett. 1, 251 (1962)CrossRefGoogle Scholar
  5. 5.
    C. Kittel, Quantum Theory of Solids (John Wiley & Sons), p. 190Google Scholar
  6. 6.
    D.B. Haviland, L.S. Kuzmin, P. Delsing, K.K. Likharev, and T. Claeson, Z. Phys. B 85, 339 (1991)CrossRefGoogle Scholar
  7. 8.
    L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, W. Kool, C.J.P.M. Harmans, J.G. Williamson, A.A.M. Staring, and C.T. Foxon, Z. Phys. B 85, 367 (1991)CrossRefGoogle Scholar
  8. 8.
    A. Kawabata, J. Phys. Soc. Jpn. 58, 372 (1989)CrossRefGoogle Scholar
  9. 9.
    A. Kawabata, J. Phys. Soc. Jpn. 60, 3222 (1991)CrossRefGoogle Scholar
  10. 10.
    J. Friedel, Phil. Mag. 43 (1952) 153; Advance in Physics 3(1954) 446Google Scholar
  11. 11.
    J.S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961)CrossRefGoogle Scholar
  12. 12.
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964)CrossRefGoogle Scholar
  13. 13.
    T.K. Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)CrossRefGoogle Scholar
  14. 14.
    L.T, Grazman and M.E. Raikh, JETP Lett. 44, 452 (1988)Google Scholar
  15. 15.
    R. Fazio and G. Schön, Phys. Rev. 43, 5307 (1991)CrossRefGoogle Scholar
  16. 16.
    V.L. Berezinskii, Soviet Phys. JETP 32, 493 (1971)Google Scholar
  17. 17.
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973)CrossRefGoogle Scholar
  18. 18.
    J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)CrossRefGoogle Scholar
  19. 19.
    S. Kobayashi, A. Kanda, and R. Yamada, Jpn. J. Appl. Phys. 34, 4548 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • A. Kawabata

There are no affiliations available

Personalised recommendations