Quantum Wires and Dots by MOCVD (I)

  • T. Fukui
Part of the NanoScience and Technology book series (NANO)

Abstract

The use of monoatomic and multi-atomic steps formed on vicinal (001) GaAs substrates has been proposed and demonstrated to realize two-dimensional quantum confinement structures such as quantum wires (QWRs) grown by MOCVD [1–4] which can be used as a new type of electron wave interference device [5] Similar QWR structures have been observed in tilted GaAs/AlAs superlattices on vicinal (001) GaAs substrates grown by MBE [6], in a thin In-GaAs layer at the edge of InP multiatomic steps on vicinal (001) InP surfaces grown by metalorganic MBE [7], and in a thin AlGaAs composition modulation layer at the edge of AlAs multiatomic steps on vicinal (110) GaAs substrates grown by gas-source MBE [8]. In this section we review some of these structures.

Keywords

Titanium Anisotropy GaAs Diethyl Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Fukui and H. Saito, Appl. Phys. Lett. 50, 824 (1987)CrossRefGoogle Scholar
  2. 2.
    S. Hara, J. Ishizaki, J. Motohisa, T. Fukui, and H. Hasegawa, J. Cryst. Growth 145, 692 (1994)CrossRefGoogle Scholar
  3. 3.
    S. Hara, J. Motohisa, T. Fukui, and H. Hasegawa, Jpn. J. Appl. Phys. 34, 4401 (1995)CrossRefGoogle Scholar
  4. 4.
    S. Hara, J. Motohisa, and T. Fukui, J. Cryst. Growth 170, 579 (1997)CrossRefGoogle Scholar
  5. 5.
    J. Motohisa, M. Akabori, S. Hara, J. Ishizaki, K. Ohkuri, and T. Fukui, Physica B 227, 295 (1996)CrossRefGoogle Scholar
  6. 6.
    P.M. Petroff, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984)CrossRefGoogle Scholar
  7. 7.
    M.J.S.P. Brasil, A.A. Bernussi, M.A. Cotta, M.V. Marquezini, J.A. Brum, R.A. Hamm, S.N.G. Chu, L.R. Harriott, and H. Temkin, Appl. Phys. Lett. 65, 857 (1994)CrossRefGoogle Scholar
  8. 8.
    K. Inoue, K. Kimura, K. Maehashi, S. Hasegawa, H. Nakashima, M. Iwane, O. Matsuda, and K. Murase, J. Cryst. Growth 127, 1041 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Ishizaki, K. Ohkuri, and T. Fukui, Jpn. J. Appl. Phys. 35, 1280 (1996)CrossRefGoogle Scholar
  10. 10.
    K. Hiramoto, T. Tsuchiya, M. Sagawa, and K. Uomi, J. Cryst. Growth 145, 133 (1994)CrossRefGoogle Scholar
  11. 11.
    T. Fukui, S. Ando, T. Honda, and T. Toriyama, Surf. Sci. 267, 236 (1992)CrossRefGoogle Scholar
  12. 12.
    Y. Nagamune, S. Tsukamoto, M. Nishioka, and Y. Arakawa, J. Cryst. Growth 126, 707 (1993)CrossRefGoogle Scholar
  13. 13.
    K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui, and H. Hasegawa, Jpn. J. Appl. Phys. 34, 4387 (1995)CrossRefGoogle Scholar
  14. 14.
    K. Yamaguchi and K. Okamoto, Appl. Phys. Lett. 59, 3580 (1991)CrossRefGoogle Scholar
  15. 15.
    S. Koshiba, H. Noge, H. Akiyama, T. Inoshita, Y. Nakamura, A. Shimizu, Y. Nagamune, M. Tsuchiya, H. Kano, H. Sakaki, and K. Wada, Appl. Phys. Lett. 64, 363 (1994)CrossRefGoogle Scholar
  16. 16.
    S. Ando, T. Honda, and N. Kobayashi, Jpn. J. Appl. Phys. 32, L104 (1994)CrossRefGoogle Scholar
  17. 17.
    J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994)CrossRefGoogle Scholar
  18. 18.
    P.M. Petroff and S. P. DenBaars, Superlattice & Microstruct. 15, 15 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, Electrn. Lett. 27, 2138 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • T. Fukui

There are no affiliations available

Personalised recommendations