Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Landauer derived the relation between the conductance of a one-dimensional (1D) wire and the transmission and reflection probabilities at the Fermi level [1]. Let us consider the system schematically illustrated in Fig. 1.3.1. A wire is connected at both ends to an ideal wire which is infinitely long and eventually connected to an electron reservoir. The ideal reservoir satisfies the following two conditions:

  1. (1)

    All incident electrons are absorbed by the reservoir irrespective of their energy and phase.

  2. (2)

    It constantly provides electrons with energy below chemical potential µ. The energy and phase of these electrons are independent of those of absorbed electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Philos. Mag. 21, 863 (1970).

    Article  Google Scholar 

  2. P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S. Fisher, Phys. Rev. B 22, 3519 (1980)

    Article  Google Scholar 

  3. P.W. Anderson, Phys. Rev. B 23, 4828 (1981)

    Article  Google Scholar 

  4. M.Y. Azbel, J. Phys. C 14, L225 (1981)

    Article  CAS  Google Scholar 

  5. M. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

  6. E.N. Economou and C.M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981)

    Article  CAS  Google Scholar 

  7. D.S. Fisher and P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  CAS  Google Scholar 

  8. D.C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981)

    Article  CAS  Google Scholar 

  9. D.J. Thouless, Phys. Rev. Lett. 47, 972 (1981)

    Article  CAS  Google Scholar 

  10. Y. Imry, Europhys. Lett. 1, 249 (1986)

    Article  CAS  Google Scholar 

  11. See, for example, T. Ando, Phys. Rev. B 44, 8017 (1991) and references cited therein

    Article  Google Scholar 

  12. U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986)

    Article  CAS  Google Scholar 

  13. P. Streda, J. Phys. Conden. Matter 1, 1025 (1989)

    Article  Google Scholar 

  14. P.N. Butcher, J. Phys. Condens. Matter 2, 4869 (1990)

    Article  Google Scholar 

  15. C. Proetto, Phys. Rev. B 44, 9096 (1991); Solid State Commun. 80, 909 (1991)

    Article  Google Scholar 

  16. Y. Okuyama, T. Sakuma, and N. Tokuda, Surf. Sci. 263, 258 (1992)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ando, T. (1998). Landauer’s Formula. In: Ando, T., Arakawa, Y., Furuya, K., Komiyama, S., Nakashima, H. (eds) Mesoscopic Physics and Electronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71976-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71976-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71978-3

  • Online ISBN: 978-3-642-71976-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics