Skip to main content

Electron-Wave Reflection and Resonance Devices

  • Chapter
Mesoscopic Physics and Electronics

Part of the book series: NanoScience and Technology ((NANO))

  • 798 Accesses

Abstract

Metal/insulator ultrathin heterostructures are good candidates for high-speed electron devices, because the high carrier density of the metal and the low dielectric constant of the insulator are suitable for size reduction and high-speed operation [1,2]. In addition, due to a very large conduction-band discontinuity at the heterointerface, the interference of the electron wave is expected to become significant in, multilayer structures, which result in high transconductance and multifunctionality of the quantum-effect devices [3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Mead, J. Appl. Phys. 32, 646 (1961)

    Article  Google Scholar 

  2. M. Heiblum, Solid State Electron. 24, 343 (1981)

    Article  CAS  Google Scholar 

  3. Y. Nakata, M. Asada, and Y. Suematsu, Electron. Lett. 22, 58 (1986)

    Article  Google Scholar 

  4. T. Sakaguchi, M. Watanabe, and M. Asada, IEICE Trans. E74, 3326 (1991)

    Google Scholar 

  5. M. Watanabe, S. Muratake, T. Suemasu, H. Fujimoto, S. Sakamori, M. Asada, and S. Arai, J. Electron. Mat. 21, 783 (1992)

    Article  CAS  Google Scholar 

  6. M. Watanabe, T. Suemasu, S. Muratake, and M. Asada, Appl. Phys. Lett. 62, 300 (1993)

    Article  CAS  Google Scholar 

  7. T. Suemasu, M. Watanabe, J. Suzuki, Y. Kohno, M. Asada, and N. Suzuki, Japan. J. Appl. Phys. 33, 57 (1994)

    Article  CAS  Google Scholar 

  8. T. Suemasu, Y. Kohno, W. Saitoh, M. Watanabe, and M. Asada, IEEE Trans. Electron Devices, 42, 2203 (1995)

    Article  CAS  Google Scholar 

  9. W. Saitoh, T. Suemasu, Y. Kohno, M. Watanabe, and M. Asada, Japan. J. Appl. Phys. 34, 4481 (1995)

    Article  CAS  Google Scholar 

  10. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, and H. Nishi, Japan. J. Appl. Phys. 24, L853 (1985)

    Article  CAS  Google Scholar 

  11. W. Saitoh, K. Yamazaki, M. Asada, and M. Watanabe, Japan. J. Appl. Phys. 35, L1104 (1996)

    Article  CAS  Google Scholar 

  12. R.T. Tung and F. Schrey, Appl. Phys, Lett. 54, 852 (1989)

    Article  CAS  Google Scholar 

  13. A. Izumi, K. Tsutsui, N.S. Sokolov, N.N. Faleev, S.V. Gastev, S.V. Novikov, and N.L. Yakovlev, J. Cryst. Growth 150, 1115 (1995)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asada, M. (1998). Electron-Wave Reflection and Resonance Devices. In: Ando, T., Arakawa, Y., Furuya, K., Komiyama, S., Nakashima, H. (eds) Mesoscopic Physics and Electronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71976-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71976-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71978-3

  • Online ISBN: 978-3-642-71976-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics