Skip to main content

Induction of Graft-versus-Leukemia-Activity after Peripheral Blood Progenitor Cell Transplantation (PBPCT)

  • Conference paper
Acute Leukemias VII

Part of the book series: Haematology and Blood Transfusion / Hämatologie und Bluttransfusion ((HAEMATOLOGY,volume 39))

  • 120 Accesses

Abstract

Using a murine transplantation model we have investigated the induction of GvL activity with allogeneic peripheral blood progenitor cells (PBPCs). We compared the influence of allogeneic PBPC and BM grafts on GvHR and leukemic relapse in mice bearing a B-lymphoblastic leukemia (A20). Furthermore, we evaluated the impact of T cell depletion on the risk of relapse and determined the effectiveness of ex vivo treatment with NK-cell activating cytokines as a compensation for the loss of T-cell derived factors stimulating natural cytotoxicity. Methods: After pretreatment of Balb/c (H-2d) recipients with 7.5 Gy of total body irradiation, 2 × 107 rhG-CSF-mobilized PBPCs of syngeneic or MHC-identical DBA (H-2d) mice were transfered. Selective T-cell depletion (TCD) was performed by immunomagnetic purging with a monoclonal antibody directed against CD3. In some ex-perimental groups, T-cell-depleted PBPCs were incubated with 200 U/ml IL-2 and 100 U/ml IL-12 for 24 hrs. To investigate anti-leukemic activity in vivo, recipient mice were inoculated with 1 × 105A-20 cells (a Blymphoblastic leukemia of Balb/c origin) 2 days prior to PBPCT. Results: The mortality rate due to GVHD was identical after allogeneic BMT and allogeneic PBPCT, although PBPC grafts contained the fourfold amount of CD3+ T cells than BMC grafts (61% vs. 15%). The relapse rates were 80% after syngeneic PBPCT and 60% after allogeneic BMT. After allogeneic PBPCT, a relapse rate of 34% was observed, indicating significantly (p < 0.05)superior GVL activity of PBPCT. After TCD of allogeneic grafts with antiCD3, the incidence of GvH-related mortality was below 5% but leukemia free survival was decreased to 25% and thus was similar to syngeneic PBPCT (17%, p < 0.05). When CD3-depleted grafts were incubated with IL-2 and IL-12, 45% of the animals remained free from leukemia. However, the difference was statistcally not significant. Our results suggest that stronger GVL effects can be induced by transplantation of PBPC as compared to BM grafts and that the ex-vivo activation of residual MHC-matched NK-cells with IL-2 and IL-12 does not fully compen-sate for the abrogation of GvL-activity after depletion of CD3-positive T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb H-J, Rimm AA, Ringdén O, Rozman C, Speck B, Truitt RL, Zwaan FE, Bortin MM (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555

    PubMed  CAS  Google Scholar 

  2. Antin JH (1993) Graft-versus-leukemia effect: no longer an epiphenomenon. Blood 82: 2273

    PubMed  CAS  Google Scholar 

  3. Weiden PL, Flournoy MS, Thomas ED, Prentice R, Fefer A, Buckner CD, Storb R (1979) Antileukemic effect of graft-versus-host disease in human recipients of allogeneic marrow grafts. N Engl J Med 300: 1068–1073

    Article  PubMed  CAS  Google Scholar 

  4. Glass B, Uharek L, Gassmann W, Focks, B, Bolouri, H, Loeffler H, Mueller-Ruchholtz W (1992) Graft-versus-leukemia activity after bone marrow transplantation does not require graft-versus-host disease. Ann Hematol 64: 255–259

    Article  PubMed  CAS  Google Scholar 

  5. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loftier H, Hunter A, Russell NH (1995) Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 85: 1666

    PubMed  CAS  Google Scholar 

  6. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J, Storb R, Buckner CD (1995) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85: 1655

    PubMed  CAS  Google Scholar 

  7. Dreger P, Viehmann K, Steinmann J, Eckstein V, Muller-Ruchholtz WH, Schmitz N (1995) GCSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: comparison of T cell depletion strategies using different CD34+ selection systems or CAMPATH-1. Experimental Hematology 23: 147

    PubMed  CAS  Google Scholar 

  8. Schmitz N, Bacigalupo A, Labopin M, Majolino I, Laporte JP, Brinch L, Cook G, Lambertenghi Deliliers G, Lange A, Rozman C, Garcia-Conde J, Finke J, Domingo-Albos A, Gratwohl A (1996) Transplantation of peripheral blood progenitor cells from HLA-identical sibling donors. Br J Haematol 95: 715

    Article  PubMed  CAS  Google Scholar 

  9. Bensinger WI, Weaver CH,Appelbaum FR, Rowley S, Demirer T, Sanders J, Storb R, Buckner CD (1995) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85: 1655

    PubMed  CAS  Google Scholar 

  10. Maraninchi D, Gluckman E, Blaise D, Guyotat D, Rio B, Pico JLL, Michallet M, Dreyfus F, Ifrah N (1987) Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 2: 175

    Article  PubMed  CAS  Google Scholar 

  11. Uharek L, Gassmann W, Glass B, Steinmann J, Loeffler, H (1992) Influence of cell dose and graft-versus-host reactivity on rejection rates after allogeneic bone marrow transplantation. Blood 79: 1612

    PubMed  CAS  Google Scholar 

  12. Uharek L, Glass B, Gaska T, Gassmann W, Loeffler H, Mueller-Ruchholtz W (1994) Influence of donor lymphocytes on the incidence of primary graft failure after allogeneic bone marrow transplantation in a murine model. British Journal of Haematology 88: 79

    Article  PubMed  CAS  Google Scholar 

  13. Horowitz MM, Messerer D, Hoelzer D, Gale RP, Neiss A, Atkinson KB, Buchner T, Freund M, Heil G (1991) Chemotherapy compared with bone marrow transplantation for adults with acute lymphoblastic leukemia in first remission. Annals of Internal Medicine 115: 13

    PubMed  CAS  Google Scholar 

  14. Hauch M, Gazzola MV, Small T, Bordignon C, Barnett L, Cunningham ICH, O’Reilly RJ, Keever CA (1990) Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia. Blood 75: 2250

    PubMed  CAS  Google Scholar 

  15. Glass B, Uharek L, Zeis M, Loeffler H, Mueller Ruchholtz W, Gassmann W (1996) Graft-versusleukaemia activity can be predicted by natural cytotoxicity against leukaemia cells. Br J Haematol 93: 412

    Article  PubMed  CAS  Google Scholar 

  16. Vallera DA, Soderling CCB, Carlson GJ, Kersey JH (1981) Bone marrow transplantation across major histocompatibility barriers in mice. Effect of elimination of T cells from donor grafts by treatment with monoclonal Thy-1.2 plus complement or antibody alone. Transplantation 31: 218

    Article  PubMed  CAS  Google Scholar 

  17. Aversa F, Tabilio A, Terenzi A, Velardi A, Falzetti F, Giannoni CIR, Zei T, Martelli MP, Gambe-lunghe C (1994) Successful engraftment of Tcell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 84: 3948

    PubMed  CAS  Google Scholar 

  18. Zeis M, Uharek L, Glass B, Gaska T, Steinmann J, Gassmann W, Loffler H, Muller-Ruchholtz W (1995) Allogeneic NK cells as potent antileukemic effector cells after allogeneic bone marrow transplantation in mice. Transplantation 59: 1734

    Article  PubMed  CAS  Google Scholar 

  19. Zeis M, Uharek L, Glass B, Gaska T, Gassmann W, Mueller-Ruchholtz W (1994) Induction of graftversus-leukemia (GVL) activity in murine leukemia models after IL-2 pretreatment of syngeneic and allogeneic bone marrow grafts. Bone Marrow Transplantation 14: 711

    PubMed  CAS  Google Scholar 

  20. Moretta L, Ciccone E, Mingari MC, Biassoni R, Moretta A (1994) Human natural killer cells: origin, clonality, specificity, and receptors. Advances in Immunology 55: 341

    Article  PubMed  CAS  Google Scholar 

  21. Champlin R, Pasweg J, Horowitz M, and for the International Bone Marrow Transplant Registry (1995) Blood T-cell Depleted (TCD) BMT for Leukemia Patients with Donors Other than HLA-identical Siblings ( Abstract ). Blood 86: 94a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uharek, L., Glass, B., Zeis, M., Dreger, J.P., Steinmann, J., Schmitz, N. (1998). Induction of Graft-versus-Leukemia-Activity after Peripheral Blood Progenitor Cell Transplantation (PBPCT). In: Hiddemann, W., et al. Acute Leukemias VII. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71960-8_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71960-8_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71962-2

  • Online ISBN: 978-3-642-71960-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics