Advertisement

Occurrence of TEL-AML1 Fusion Resulting from (12;21) Translocation in Human Early B-Lineage Leukemia Cell Lines

  • C. C. Uphoff
  • R. A. F. MacLeod
  • S. A. Denkmann
  • T. R. Golub
  • A. Borkhardt
  • J. W. G. Janssen
  • H. G. Drexler
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 39)

Abstract

The recurrent (12;21)(p13;g22) translocation fuses the two genes TEL and AML1 that have previously been cloned from translocation breakpoints in myeloid leukemias. Using mainly reverse transcriptase-polymerase chain reaction (RT-PCR), the TEL chimeric transcript has been observed in 22–27% of pediatric patients with acute lymphoblastic leukemia (ALL), in particular in the early B-lineage ALL subtype, making it the most common genetic lesion in these patients. The vast majority of acute myeloid leukemias, other ALL subtypes and even adults with early B-lineage ALL were TEL-AML1-negative. We determined whether the TEL fusion gene can also be observed in leukemia cell lines with an early B-lineage phenotype. Twenty-nine cell lines established from children (n = 13) or adults (n = 13) with early B-lineage ALL and five cell lines derived from chronic myeloid leukemia in blast crisis or B-cell non-Hodgkin’s lymphoma were investigated for the occurrence of the TEL-AML1 rearrangement by RT-PCR. While all 13 adult early B-Iineage ALL cell lines and the five cell lines from other leukemias or lymphomas were negative, 1/13 pediatric cell lines (cell line REH) was found to be positive for TEL though neither reciprocal AML1-TEL,nor normal TEL, mRNA was detectible by RT-PCR in this cell line. These findings agreed with the results of conventional cytogenetic and FISH analysis of REH which carries the der(21) partner only of t(12;21)(p13;q22), probably resulting from a complex translocation, t(4;12;21;16) (q32;p13;q22;q24.3). Hybridization with flanking cosmid clones, covering exons 1 and 8 respectively of TEL,confirmed a rearrangement accompanying the t(12;21), and showed cryptic deletion of the residual allele resulting from an apparently reciprocal t(5;12)(q31;p13). These findings in REH provide a further example of, and possible cytogenetic mechanism for, the paradigm of TEL-AML1 fusion accompanied by deletion of the residual TEL allele. The low rate of early B-lineage ALL cell lines carrying this translo cation contrasts clearly with the relative high frequency of TEL-AML1-positive cases in primary material. It is possible that expression of the fusion product hampers the in vitro growth and establishment in culture of such leukemic cells. The cell line REH represents a useful tool for the further molecular characterization of this unique breakpoint and can serve as a positive control in routine PCR reactions.

Keywords

Acute Lymphoblastic Leukemia Chronic Myeloid Leukemia Chimeric Transcript Cryptic Deletion Unique Breakpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drexler HG, MacLeod RAF, Borkhardt A, Janssen JWG (1995) Recurrent chromosomal translocations and fusion genes in leukemia-lymphoma cell lines. Leukemia 9: 480–500PubMedGoogle Scholar
  2. 2.
    Pui CH. Childhood leukemias (1995) New Engl J Med 332: 1618–1630PubMedCrossRefGoogle Scholar
  3. 3.
    Shurtleff SA, Bujis A, Behm FG, Rubnitz JE, Rai-mondi SC, Hancock ML, Chan GCF, Pui CH, Grosveld G, Downing JR (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989PubMedGoogle Scholar
  4. 4.
    Romana SP, Le Coniat M, Berger R (1994) t(12;21): A new recurrent translocation in acute lymphoblastic leukemia. Genes Chromos Cancer 9: 186–191PubMedCrossRefGoogle Scholar
  5. 5.
    Kobayashi H, Montgomery KT, Bohlander SK, Adra CN, Lim BL, Kucherlapati RS, Donis-Keller H, Holt MS, Le Beau MM, Rowley JD (1994) Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases. Blood 84: 3473–3482PubMedGoogle Scholar
  6. 6.
    Kobayashi H, Rowley JD (1995) Identification of cytogenetically undetected 12p13 translocations and associated deletions with fluorescence in situ hybridization. Genes Chromos Cancer 12: 66–69PubMedCrossRefGoogle Scholar
  7. 7.
    Stegmaier K, Pendse S, Barker GF, Bray-Ward P, Ward DC, Montgomery KT, Krauter KS, Reynolds C, Sklar J, Donnelly M, Bohlander SK, Rowley JD, Sallan SE, Gilliland DG, Golub TR (1995) Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood 86: 38–44PubMedGoogle Scholar
  8. 8.
    Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG (1995) Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4917–4921PubMedCrossRefGoogle Scholar
  9. 9.
    Romana SP, Mauchauffé M, Le Coniat M, Chumakov I, Le Pasier D, Berger R, Bernard OA (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85: 3662–3670PubMedGoogle Scholar
  10. 10.
    Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor ß to a novel etslike gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316PubMedCrossRefGoogle Scholar
  11. 11.
    Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM (1995) The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 55: 34–38PubMedGoogle Scholar
  12. 12.
    Bujis A, Sherr S, van Baal S, van Bezouw S, van der Plas D, van Kessel AD, Riegman P, Deprez RI, Zwarthoff E, Hagemeijer A, Grosveld G (1995) Translocation (12;22)(p13;g11) in myeloproliferative disorders results in fusion of the ETSlike TEL gene on 12p13 to the MN1 gene on 22g11.Oncogene 10: 1511–1519Google Scholar
  13. 13.
    Wlodarska I, Mecucci C, Marynen P, Guo C, Franckx D, La Starza R, Aventin A, Bosly A, Martelli MF, Cassiman JJ, van den Berghe H (1995) TEL gene is involved in myelodysplastic syndromes with either the typical t(5;12)(q33;p13) translocation or its variant t(10;12)(g24;p13). Blood 85: 2848–2852PubMedGoogle Scholar
  14. 14.
    Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M, Gilliland DG (1996) The TEL gene and human leukemia. Biochim Biophys Acta 1288: M7–M10PubMedGoogle Scholar
  15. 15.
    Chambost H, Michel G, Thuret I, Toiron Y, Brunet C, Capodano AM, Sainty D, Maraninchi D, Gabert J (1996) TEL/AML1 transcript in childhood acute lymphoblastic leukaemia: A new candidate for minimal residual disease study rather than a new prognosis factor? Brit J Haematol 93, Suppl. 2: 55Google Scholar
  16. 16.
    McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J, Koeffler HP, Takeuchi S, Janssen JWG, Seriu T, Bartram CR, Sallan SE, Gilliland DG, Golub TR (1996) TEL/AML1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 88: 4252–4258PubMedGoogle Scholar
  17. 17.
    Raynaud S, Cavé H, Baens M, Bastard C, Cacheux V, Grosgeorge J, Guidal-Giroux C, Guo C, Vilmer E, Marynen P, Grandchamp B (1996) The 12;21 translocation involving TEL and deletion of the other TEL allele: Two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87: 2891–2899PubMedGoogle Scholar
  18. 18.
    Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffé M, Jonveaux P, Macintyre E, Berger R, Bernard OA (1995) High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86: 4263–4269PubMedGoogle Scholar
  19. 19.
    Aguiar RCT, Goldman JM, Cross NCP (1996) Fusion of TEL gene at 12p13 to the AML1 gene at 21g22 is rare in adult acute lymphoid leukemia. Brit J Haematol 93, Suppl. 2: 54Google Scholar
  20. 20.
    Cayuela JM, Baruchel A, Orange C, Madani A, Auclearc MF, Daniel MT, Schaison G, Sigaux F (1996) TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 88: 302–308PubMedGoogle Scholar
  21. 21.
    Liang DC, Chou TB, Chen JS, Shurtleff SA, Rubnitz JE, Downing JR, Pui CH, Shih LY (1996) High incidence of TEL/AML1 fusion resulting from a cryptic t(12;21) in childhood B-lineage acute lymphoblastic leukemia in Taiwan. Leukemia 10: 991–993PubMedGoogle Scholar
  22. 22.
    Kobayashi H, Satake N, Maseki N, Sakashita A, Kaneko Y (1996) The der(21)t(12;21) chromosome is always formed in a 12;21 translocation associated with childhood acute lymphoblastic leukaemia. Brit J Haematol 94: 105–111CrossRefGoogle Scholar
  23. 23.
    Raynaud S, Mauvieux L, Cayuela JM, Bastard C, Bilhou-Nabera C, Debuire B, Bories D, Boucheix C, Charrin C, Fière D, Gabert J (1996) TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia 10: 1529–1530PubMedGoogle Scholar
  24. 24.
    Shih LY, Chou TB, Liang DC, Tzeng YS, Rubnitz JE, Downing JR, Pui CH (1996) Lack of TELAML1 fusion transcript resulting from a cryptic t(12;21) in adult B lineage acute lymphoblastic leukemia in Taiwan. Leukemia 10: 1456–1458PubMedGoogle Scholar
  25. 25.
    Nakao M, Yokota S, Horiike S, Taniwaki M, Kash-ima K, Sonoda Y, Koizumi S, Takaue Y, Matsushita T, Fujimoto T, Misawa S (1996) Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia 10: 1463–1470PubMedGoogle Scholar
  26. 26.
    Sato Y, Suto Y, Pietenpol J, Golub TR, Gilliland DG, Davis EM, Le Beau MM, Roberts JR, Vogelstein B, Rowley JD, Bohlander SK (1995) TEL and KIP 1 define the smallest region of deletions on 12p13 in hematopoietic malignancies. Blood 86: 1525–1533PubMedGoogle Scholar
  27. 27.
    Stegmaier K, Takeuchi S, Golub TR, Bohlander SK, Bartram CR, Koeffler HP, Gilliland DG (1996) Mutational analysis of the candidate tumor suppressor genes TEL and KIP1 in childhood acute lymphoblastic leukemia. Cancer Res 56: 1413–1417PubMedGoogle Scholar
  28. 28.
    Takeuchi S, Bartram CR, Miller CW, Reiter A, Seri T, Zimmermann M, Schrappe M, Mori N, Slater J, Miyoshi I, Koeffler HP (1996) Acute lymphoblastic leukemia of childhood: Identification of two distinct regions of deletion on the short arm of chromosome 12 in the region of TEL and KIP1. Blood 87: 3368–3374PubMedGoogle Scholar
  29. 29.
    Baens M, Peeters P, Guo C, Aerssens J, Marynen P (1996) Genomic organization of TEL: The human ETS variant gene 6 (ETV 6). Genome Res 6: 404–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • C. C. Uphoff
    • 1
  • R. A. F. MacLeod
    • 1
  • S. A. Denkmann
    • 1
  • T. R. Golub
    • 2
  • A. Borkhardt
    • 3
  • J. W. G. Janssen
    • 4
  • H. G. Drexler
    • 1
  1. 1.German Collection of Microorganisms & Cell CulturesBraunschweigGermany
  2. 2.Children’s Hospital and Dana-Farber Cancer InstituteBostonUSA
  3. 3.Division of PediatricsJustus Liebig University of GiessenGiessenGermany
  4. 4.Institute of Human GeneticsUniversity of HeidelbergGermany

Personalised recommendations