Advertisement

Ecological Potentials for Planktonic Development and Food Web Interactions in Extremely Acidic Mining Lakes in Lusatia

  • B. Nixdorf
  • K. Wollmann
  • R. Deneke
Part of the Environmental Science book series (ESE)

Abstract

Lakes can be acidified naturally (crater lakes or other volcanic waters) or by anthropogenic impact (acid rain and mine tailing). Contrary to the very well investigated physicochemical mechanisms and ecological consequences of the atmospheric acidification of lakes (Steinberg and Wright 1994), knowledge about the limnology in geogenically acidified lakes is limited (Geller et al., this Vol.). Normally it is expected that, except for specialized bacteria and fungi, only a few organisms are able to survive in lake waters with pH < 3.

Keywords

Total Phosphorus Dissolve Inorganic Carbon Soluble Reactive Phosphorus Acid Neutralization Capacity Mining Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almer B, Dickson W, Ekström C, Hörnström E, Miller U (1974) Effects of acidification on Swedish lakes. Ambio 3(1)130–36Google Scholar
  2. Anderson DS, Davis RB, Ford MS (1993) Relationship between sedimented diatom species (Bacillariophyceae) to environmental gradients in dilute northern New England lakes. J Phycol 29 (3): 264–277CrossRefGoogle Scholar
  3. Benndorf J (1994) Sanierungsmaßnahmen in Binnengewässern: Auswirkungen auf die trophische Struktur. Limnologica 24(2)1121–135Google Scholar
  4. Blomquist P, Bell RT, Olofsson H, Stensdotter U, Vrede K (1993) Pelagic ecosystem responses to nutrient additions in acidified and limed lakes in Sweden. Ambio 22(5)1283–289Google Scholar
  5. Blouin AC (1989) Patterns of plankton species, pH and associated water chemistry, in Nova Scotia lakes. Water Air Soil Pollut 46 (1–4) 1343–358Google Scholar
  6. Boylen CW, Shick MO, Roberts DA, Singer R (1983) Microbiological survey of Adirondack lakes with various pH values. Appl Environ Microbiol 45: 1538–1544Google Scholar
  7. Davison W (1987) Internal element cycles affecting the long-term alkalinity status of lakes: implications for lake restoration. Schweiz Z Hydrol 49: 186–201CrossRefGoogle Scholar
  8. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (1986–1996). Verlag Chemie, WeinheimGoogle Scholar
  9. Dixit SS, Smol JP (1989) Algal assemblages in acid-stressed lakes with particular emphasis on diatoms and chrysophytes. In: Rao SS (ed) Acid stress and aquatic microbial interactions. CRC Press, Boca Raton, pp 91–114Google Scholar
  10. Duty HC, Ostrofsky ML (1974) Plankton chemistry, and physics of lakes in the Churchill Falls region of Labrador. J Fish Res Board Can 31: 1105CrossRefGoogle Scholar
  11. Eriksson MOG, Henrikson L, Nilsson BI, Nyman G, Oscarson HG, Stenson AE (1980) Predator-prey relations, important for biotic changes in acidified lakes. Ambio 9 (5): 248–249Google Scholar
  12. Goldman JC, Oswald WJ, Jenkins D (1974) The kinetics of inorganic carbon-limited algal growth. J Water Pollut Control Fed 46(3)1554–574Google Scholar
  13. Graneli E, Haraldson C (1993) Can increased leaching of trace metals from acidified areas influence phytoplankton growth in coastal waters? Ambio 22(5)1308–311Google Scholar
  14. Henrikson L, Oscarson HG (1981) Corixids ( Hemiptera-Heteroptera), the new top predators in acidified lakes. Verh Int Ver Limnol 21: 1616–1620Google Scholar
  15. Hermann R (1994) Die Versauerung von Oberflächengewässern. Limnologica 24 (2): 105–120Google Scholar
  16. Jannson M (1981) Induction of high phosphatase activity by aluminium in acid lakes. Arch Hydrobiol 93 (1): 32–44Google Scholar
  17. Kapfer M. Colonisation and primary production of microphytobenthos in the littoral of acid mining lakes in Lusatia (Germany). Water, Air & Soil Pollution (submitted)Google Scholar
  18. Kapfer M, Mischke U, Wollmann K, Krumbeck H (1997) Erste Ergebnisse zur Primärproduktion in extrem sauren Tagebauseen der Lausitz. In: Deneke R, Nixdorf B (Hrsg) Gewässerreport (Teil III). BTU Cottbus Aktuelle Reihe 5: 31–40Google Scholar
  19. Köcher B, Nixdorf B (1994) Bakterien und autotrophes Picoplankton in natürlichen und künstlichen Seen der Region Berlin/Brandenburg. Deutsche Gesellschaft für Limnologie, Erweiterte Zusammenfassungen, Coburg, pp 284–288Google Scholar
  20. Kwiatkowski RE, Roff JC (1976) Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can J Bot 54: 2546–2561CrossRefGoogle Scholar
  21. Lenhard B, Steinberg C (1984) Limnochemische und limnobiologische Auswirkungen der Versauerung von kalkarmen Oberflächengewässern. Inform Bayer Landesamt Wasserwirtschaft 4 /84Google Scholar
  22. Mills AL, Bell PE, Herlihy AT (1989) Microbes, sediments, and acidified water: the importance of biological buffering in acid stress and aquatic microbial interactions. In: Rao SS (ed) Acid stress and aquatic microbial interactions. CRC Press, Boca Raton, pp 1–20Google Scholar
  23. Mischke U, Rücker J, Kapfer M, Nixdorf B (1995) Besiedlungsstruktur und Interaktionen im Plankton geogen versauerter Tagebaurestseen der Lausitz. Deutsche Gesellschaft für Limnologie, Erweiterte Zusammenfassungen, Hamburg, pp 700–704Google Scholar
  24. Nixdorf B, Deneke R (1997) Why very shallow lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342 /343: 269–284CrossRefGoogle Scholar
  25. Nixdorf B, Hoeg S (1993) Phytoplankton-community structure, succession and chlorophyll content in Lake Müggelsee from 1979 to 1990. Int Revue Ges Hydrobiol 78 (3): 359–377CrossRefGoogle Scholar
  26. Nixdorf B, Leßmann D, Grünewald U, Uhlmann W (1997) Limnology of extremely acidic mining lakes in Lusatia (Eastern Germany) and their fate between acidity and eutrophication. Proc Conf on Acid rock drainage, Canada 1997, Vol IV, pp 1745–1760Google Scholar
  27. Nixdorf B, Mischke U, Leßmann D (1998) Chrysophyta and Chlorophyta - pioneers of planktonic succession in extremely acidic mining lakes in Lusatia. Hydrobiologia (in press)Google Scholar
  28. Nixdorf B, Kühne M (1998) Besonderheiten im Stoffhaushalt künstlicher Klarwasserseen Südostbrandenburgs (Tagebauseen der Lausitz) - ein Überblick. Beiträge zur Gewässerökologie Norddeutschlands. Sonderheft Klarwasserseen (submitted)Google Scholar
  29. Nixdorf B, Rücker J, Köcher B, Deneke R (1995) Erste Ergebnisse zur Limnologie von Tagebaurestseen in Brandenburg unter besonderer Berücksichtigung der Besiedlung im Pelagial. In: Geller W, Packroff G (eds) Abgrabungsseen - Risiken und Chancen. Limnologie Aktuell, no 7. Fischer, Jena, pp 39–52Google Scholar
  30. Ohle W (1981) Photosynthesis and chemistry of an extremely acidic bathing pond in Germany. Verh Int Ver Limnol 21: 1172–1177Google Scholar
  31. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25 (5): 943–948CrossRefGoogle Scholar
  32. Reynolds CS (1992) Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In: Sutcliffe DW, Jones JG (eds) Research and application to water supply. Freshwater Biol Assoc, Ambleside, pp 5–29Google Scholar
  33. Scheider W, Dillon P (1976) Neutralization and fertilization of acidified lakes near Sudbury, Ontario. Water Pollut Res Canada 11: 93–100Google Scholar
  34. Schindler DW, Holmgren SK (1971) Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining C14 activity in photosynthesis. J Fish Res Board Can 28: 189CrossRefGoogle Scholar
  35. Schultze M, Klapper H, Nixdorf B, Mischke U, Grünewald U (1994) Methodik zur limnologischen Untersuchung und Bewertung von Bergbaurestseen. Bund- Länder Arbeitsgruppe Wasserwirtschaftliche Planung, BerlinGoogle Scholar
  36. Steinberg CEW, Wright RF (eds) (1994) Acidification of freshwater ecosystems - implications for the future. Dahlem Workshop Report, ESR 14. Wiley, ChichesterGoogle Scholar
  37. TGL 27885/01 ( 1982 ) Fachbereichstandard-Nutzung und Schutz der Gewässer-Stehende Binnengewässer, Klassifizierung, DDR. BerlinGoogle Scholar
  38. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmetho-dik. Mitt Int Verein Limnol 9: 1–38Google Scholar
  39. Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum, New York, pp 327–370CrossRefGoogle Scholar
  40. Yan ND (1979) Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973–1977- Water Air Soil Pollut 11: 43–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. Nixdorf
    • 1
  • K. Wollmann
    • 1
  • R. Deneke
    • 1
  1. 1.Faculty of Environmental Sciences and Process EngineeringBrandenburg Technical University of CottbusBad SaarowGermany

Personalised recommendations