Skip to main content

Ecological Potentials for Planktonic Development and Food Web Interactions in Extremely Acidic Mining Lakes in Lusatia

  • Chapter
Acidic Mining Lakes

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Lakes can be acidified naturally (crater lakes or other volcanic waters) or by anthropogenic impact (acid rain and mine tailing). Contrary to the very well investigated physicochemical mechanisms and ecological consequences of the atmospheric acidification of lakes (Steinberg and Wright 1994), knowledge about the limnology in geogenically acidified lakes is limited (Geller et al., this Vol.). Normally it is expected that, except for specialized bacteria and fungi, only a few organisms are able to survive in lake waters with pH < 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almer B, Dickson W, Ekström C, Hörnström E, Miller U (1974) Effects of acidification on Swedish lakes. Ambio 3(1)130–36

    Google Scholar 

  • Anderson DS, Davis RB, Ford MS (1993) Relationship between sedimented diatom species (Bacillariophyceae) to environmental gradients in dilute northern New England lakes. J Phycol 29 (3): 264–277

    Article  Google Scholar 

  • Benndorf J (1994) Sanierungsmaßnahmen in Binnengewässern: Auswirkungen auf die trophische Struktur. Limnologica 24(2)1121–135

    Google Scholar 

  • Blomquist P, Bell RT, Olofsson H, Stensdotter U, Vrede K (1993) Pelagic ecosystem responses to nutrient additions in acidified and limed lakes in Sweden. Ambio 22(5)1283–289

    Google Scholar 

  • Blouin AC (1989) Patterns of plankton species, pH and associated water chemistry, in Nova Scotia lakes. Water Air Soil Pollut 46 (1–4) 1343–358

    Google Scholar 

  • Boylen CW, Shick MO, Roberts DA, Singer R (1983) Microbiological survey of Adirondack lakes with various pH values. Appl Environ Microbiol 45: 1538–1544

    CAS  Google Scholar 

  • Davison W (1987) Internal element cycles affecting the long-term alkalinity status of lakes: implications for lake restoration. Schweiz Z Hydrol 49: 186–201

    Article  CAS  Google Scholar 

  • Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (1986–1996). Verlag Chemie, Weinheim

    Google Scholar 

  • Dixit SS, Smol JP (1989) Algal assemblages in acid-stressed lakes with particular emphasis on diatoms and chrysophytes. In: Rao SS (ed) Acid stress and aquatic microbial interactions. CRC Press, Boca Raton, pp 91–114

    Google Scholar 

  • Duty HC, Ostrofsky ML (1974) Plankton chemistry, and physics of lakes in the Churchill Falls region of Labrador. J Fish Res Board Can 31: 1105

    Article  Google Scholar 

  • Eriksson MOG, Henrikson L, Nilsson BI, Nyman G, Oscarson HG, Stenson AE (1980) Predator-prey relations, important for biotic changes in acidified lakes. Ambio 9 (5): 248–249

    Google Scholar 

  • Goldman JC, Oswald WJ, Jenkins D (1974) The kinetics of inorganic carbon-limited algal growth. J Water Pollut Control Fed 46(3)1554–574

    Google Scholar 

  • Graneli E, Haraldson C (1993) Can increased leaching of trace metals from acidified areas influence phytoplankton growth in coastal waters? Ambio 22(5)1308–311

    Google Scholar 

  • Henrikson L, Oscarson HG (1981) Corixids ( Hemiptera-Heteroptera), the new top predators in acidified lakes. Verh Int Ver Limnol 21: 1616–1620

    Google Scholar 

  • Hermann R (1994) Die Versauerung von Oberflächengewässern. Limnologica 24 (2): 105–120

    Google Scholar 

  • Jannson M (1981) Induction of high phosphatase activity by aluminium in acid lakes. Arch Hydrobiol 93 (1): 32–44

    Google Scholar 

  • Kapfer M. Colonisation and primary production of microphytobenthos in the littoral of acid mining lakes in Lusatia (Germany). Water, Air & Soil Pollution (submitted)

    Google Scholar 

  • Kapfer M, Mischke U, Wollmann K, Krumbeck H (1997) Erste Ergebnisse zur Primärproduktion in extrem sauren Tagebauseen der Lausitz. In: Deneke R, Nixdorf B (Hrsg) Gewässerreport (Teil III). BTU Cottbus Aktuelle Reihe 5: 31–40

    Google Scholar 

  • Köcher B, Nixdorf B (1994) Bakterien und autotrophes Picoplankton in natürlichen und künstlichen Seen der Region Berlin/Brandenburg. Deutsche Gesellschaft für Limnologie, Erweiterte Zusammenfassungen, Coburg, pp 284–288

    Google Scholar 

  • Kwiatkowski RE, Roff JC (1976) Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can J Bot 54: 2546–2561

    Article  CAS  Google Scholar 

  • Lenhard B, Steinberg C (1984) Limnochemische und limnobiologische Auswirkungen der Versauerung von kalkarmen Oberflächengewässern. Inform Bayer Landesamt Wasserwirtschaft 4 /84

    Google Scholar 

  • Mills AL, Bell PE, Herlihy AT (1989) Microbes, sediments, and acidified water: the importance of biological buffering in acid stress and aquatic microbial interactions. In: Rao SS (ed) Acid stress and aquatic microbial interactions. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Mischke U, Rücker J, Kapfer M, Nixdorf B (1995) Besiedlungsstruktur und Interaktionen im Plankton geogen versauerter Tagebaurestseen der Lausitz. Deutsche Gesellschaft für Limnologie, Erweiterte Zusammenfassungen, Hamburg, pp 700–704

    Google Scholar 

  • Nixdorf B, Deneke R (1997) Why very shallow lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342 /343: 269–284

    Article  Google Scholar 

  • Nixdorf B, Hoeg S (1993) Phytoplankton-community structure, succession and chlorophyll content in Lake Müggelsee from 1979 to 1990. Int Revue Ges Hydrobiol 78 (3): 359–377

    Article  Google Scholar 

  • Nixdorf B, Leßmann D, Grünewald U, Uhlmann W (1997) Limnology of extremely acidic mining lakes in Lusatia (Eastern Germany) and their fate between acidity and eutrophication. Proc Conf on Acid rock drainage, Canada 1997, Vol IV, pp 1745–1760

    Google Scholar 

  • Nixdorf B, Mischke U, Leßmann D (1998) Chrysophyta and Chlorophyta - pioneers of planktonic succession in extremely acidic mining lakes in Lusatia. Hydrobiologia (in press)

    Google Scholar 

  • Nixdorf B, Kühne M (1998) Besonderheiten im Stoffhaushalt künstlicher Klarwasserseen Südostbrandenburgs (Tagebauseen der Lausitz) - ein Ãœberblick. Beiträge zur Gewässerökologie Norddeutschlands. Sonderheft Klarwasserseen (submitted)

    Google Scholar 

  • Nixdorf B, Rücker J, Köcher B, Deneke R (1995) Erste Ergebnisse zur Limnologie von Tagebaurestseen in Brandenburg unter besonderer Berücksichtigung der Besiedlung im Pelagial. In: Geller W, Packroff G (eds) Abgrabungsseen - Risiken und Chancen. Limnologie Aktuell, no 7. Fischer, Jena, pp 39–52

    Google Scholar 

  • Ohle W (1981) Photosynthesis and chemistry of an extremely acidic bathing pond in Germany. Verh Int Ver Limnol 21: 1172–1177

    CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25 (5): 943–948

    Article  Google Scholar 

  • Reynolds CS (1992) Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In: Sutcliffe DW, Jones JG (eds) Research and application to water supply. Freshwater Biol Assoc, Ambleside, pp 5–29

    Google Scholar 

  • Scheider W, Dillon P (1976) Neutralization and fertilization of acidified lakes near Sudbury, Ontario. Water Pollut Res Canada 11: 93–100

    Google Scholar 

  • Schindler DW, Holmgren SK (1971) Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining C14 activity in photosynthesis. J Fish Res Board Can 28: 189

    Article  Google Scholar 

  • Schultze M, Klapper H, Nixdorf B, Mischke U, Grünewald U (1994) Methodik zur limnologischen Untersuchung und Bewertung von Bergbaurestseen. Bund- Länder Arbeitsgruppe Wasserwirtschaftliche Planung, Berlin

    Google Scholar 

  • Steinberg CEW, Wright RF (eds) (1994) Acidification of freshwater ecosystems - implications for the future. Dahlem Workshop Report, ESR 14. Wiley, Chichester

    Google Scholar 

  • TGL 27885/01 ( 1982 ) Fachbereichstandard-Nutzung und Schutz der Gewässer-Stehende Binnengewässer, Klassifizierung, DDR. Berlin

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmetho-dik. Mitt Int Verein Limnol 9: 1–38

    Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum, New York, pp 327–370

    Chapter  Google Scholar 

  • Yan ND (1979) Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973–1977- Water Air Soil Pollut 11: 43–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nixdorf, B., Wollmann, K., Deneke, R. (1998). Ecological Potentials for Planktonic Development and Food Web Interactions in Extremely Acidic Mining Lakes in Lusatia. In: Geller, W., Klapper, H., Salomons, W. (eds) Acidic Mining Lakes. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71954-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71954-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71956-1

  • Online ISBN: 978-3-642-71954-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics