Are R-R-Intervals Data Appropriate to Study the Dynamics of Heart?

  • Alexei Potapov
Conference paper


We consider the problem of recovering the implied dynamical system, which describes the dynamics of heart, from a time series of RR intervals. The main conclusion is that on small time scales such recovery fails, and on large time scales the correlation integral behaves like that for noisy system. Consequently, it seems that recovery of underlying dynamical system and measuring its parameters (dimension, Lyapunov exponents etc.) from these data is hardly possible and more adequate is application of statistical techniques.


Lorenz Attractor Poincare Section Heartbeat Interval Noisy System Physiological Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.S. (1993): The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65 1331MathSciNetADSCrossRefGoogle Scholar
  2. Anishchenko V.S., Postnov D.E., Saparin P.I., Safonova M.A. (1992): Diagnostics of self-oscillating systems by methods of nonlinear dynamics. Applied Nonlinear Dynamics 1, 10Google Scholar
  3. Babloyantz A., Destexhe A. (1988): Is the normal heart a periodic oscillator? Biol. Cybernetics 58, 203MathSciNetCrossRefGoogle Scholar
  4. Chaos, 5, (1995): 1–215 present some recent results in processing of physiological time seriesGoogle Scholar
  5. Eckmann J.P., Ruelle D. (1985): Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 617MathSciNetADSCrossRefGoogle Scholar
  6. Isliker H., Kurths J. (1993): A test for stationarity: finding parts in time series apt for correlation dimension estimates. Int. J. Bifurc. Chaos 3 1573MATHCrossRefGoogle Scholar
  7. Ivanov P.Ch., Rosenblum M.G., Peng C.-K., Mietus J., Havlin S., Stanley H.E., Goldberger A.L. (1996): Scaling behaviour of heartbeat intervals obtained by wavelet-based time series analysis. Nature 383 323ADSCrossRefGoogle Scholar
  8. Lefebvre J.H., Goodings D.A., Kamath M.V., Fallen E.L. (1993): Predictability of normal heart rhythms and deterministic chaos. Chaos 3 267ADSCrossRefGoogle Scholar
  9. Mayer-Kress G. (1994): Localized measures for non-stationary time-series of physiological data. Integrative Psychological and Behavioral Science 29 203CrossRefGoogle Scholar
  10. Malinetskii G.G., Potapov A.B., Rakhmanov A.L. (1993): Limitations of delay reconstruction for chaotic dynamical systems. Phys. Rev. E 48 904ADSCrossRefGoogle Scholar
  11. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. (1980): Geometry from a time series. Phys. Rev. Lett. 45 712ADSCrossRefGoogle Scholar
  12. Pompe B. (1993): Measuring statistical dependencies in a time series. J. Stat. Phys. 73 587MathSciNetADSMATHCrossRefGoogle Scholar
  13. Sauer T. (1995): Interspike interval embedding of chaotic signals. Chaos 5, 127–132ADSCrossRefGoogle Scholar
  14. Sauer T., Yorke J.A., Casdagli M. (1991): Embedology. J. Stat. Phys. 65 579MathSciNetADSMATHCrossRefGoogle Scholar
  15. Schreiber T. (1993): Determination of the noise level of chaotic time series. Phys. Rev. E 48 R13MathSciNetADSCrossRefGoogle Scholar
  16. Takens F. (1981): Detecting strange attractors in turbulence, In Dynamical systems and turbulence. Lecture Notes in Mathematics Vol. 898. Springer, Berlin, Heidelberg, p. 336Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexei Potapov
    • 1
  1. 1.Max-Planck-Arbeitsgruppe “Nichtlineare Dynamik” an der Universität PotsdamGermany

Personalised recommendations