Peculiarities of Ganglioside-CA2+-Interactions

  • W. Probst
  • H. Rahmann
Part of the NATO ASI Series book series (volume 7)


The topic calcium is present in many recent papers concerning special physico-chemical and biological purposes in living systems. As compared to most of the other physiologically relevant cations, for instance magnesium, calcium is generally well known for its more variable complex binding-possibilities, especially with regard to the coordination numbers as well as to the length and the angle of binding or the degree of hydration (1, 2).


Cholesterol Magnesium Hydration Albumin Carbohydrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parsons DS (ed.) (1975) Biological membranes. Clarendon Press OxfordGoogle Scholar
  2. 2.
    Campbell AK (ed.) (1983) Intracellular calcium. John Wiley New YorkGoogle Scholar
  3. 3.
    Fromter E (1983) Transport of matter through biological membranes in Biophysics (Hoppe W, Lohmann W, Markl H, Ziegler H, eds.) Springer Berlin Heidelberg, pp. 465–502Google Scholar
  4. 4.
    Ebashi S (1985) Ca2+ in biological systems. Experientia 41: 978–981PubMedCrossRefGoogle Scholar
  5. 5.
    Probst W (1986) Ultrastructural localization of calcium in the CNS of vertebrates. Histochem 85: 231–239CrossRefGoogle Scholar
  6. 6.
    Hansson H-A, Holmgren J, Svennerholm L (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci USA 74: 3782–3786PubMedCrossRefGoogle Scholar
  7. 7.
    Rahmann H, Rosner H, Breer H (1976) A functional model of sia-lo-glycomacromolecules in synaptic transmission and memory formation. J theor Biol. 57: 231–237PubMedCrossRefGoogle Scholar
  8. 8.
    Rahmann H (1983) Functional implication of gangliosides in synaptic transmission. Neurochem Int 5: 539–547PubMedCrossRefGoogle Scholar
  9. 9.
    Svennerholm L (1956) The quantitative estimation of cerebro-sides in nervous tissue. J Neurochem 1:42–53PubMedCrossRefGoogle Scholar
  10. 10.
    Quarles R, Folch-Pi J (1965) Some effects of physiological cations on the behaviour of gangliosides in a choloroform- methanol-water biphasic system. J Neurochem 12: 543–553PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashi K, Katagiri A (1974) Studies on the interaction between gangliosides, protein and divalent cations. Biochim Biophys Acta 337: 107–117PubMedGoogle Scholar
  12. 12.
    Corti M, Degiorgio V, Ghidoni R, Sonnino S, Tettamanti G (1980) Laser-light scattering investigation of the micellar properties of gangliosides. Chem Phys Lipids 26: 225–238PubMedCrossRefGoogle Scholar
  13. 13.
    Corti M, Degiorgio V, Ghidoni R, Sonnino S (1982) Micellar properties of gangliosides. In Solution behaviour of surfactants ( Mittal KL, Fendler EJ, eds.) Plenum Press New YorkGoogle Scholar
  14. 14.
    Abramson MB, Yu RK, Zaby V (1972) Ionic properies of beef brain gangliosides. Biochim Biophvs Acta 280: 365–372Google Scholar
  15. 15.
    Behr JP. Lehn JM (1973) The binding of divalent cations by purified ganqliosides. FEBS Letters 31: 297–300PubMedCrossRefGoogle Scholar
  16. 16.
    Brown EB, Brey WS, Weltner W (1975) Cell surface carbohydra tes and their interactions. I. NMR of N-acetyl neuraminic acid. Biochim Biophys Acta 399: 124–130PubMedGoogle Scholar
  17. 17.
    Jaques LW, Brown EB, Barret JM, Brey WS, Weltner W (1977) Sialic Acid a calcium-binding carbohydrate. J Biol Chem 252: 4533–4539PubMedGoogle Scholar
  18. 18.
    Czarniecki MF, Thornton ER (1977)13C-chemical shift titration of metal ion-carbohydrate complexes. An unexpected dichotomy for Ca2 + binding between anomeric derivatives of N-acetyl neuraminic acid. Biochem Biophys Res Commun 74: 553–558PubMedCrossRefGoogle Scholar
  19. 19.
    Probst W, Rösner H, Wiegandt H, Rahmann H (1979) Das Komplexationsvermögen von Gangliosiden für Ca2+. I. Einfluß mono- und divalenter Kationen sowie von Acetylcholin. Hoppe-Seyler’s Z Physiol Chem 360: 979–986PubMedCrossRefGoogle Scholar
  20. 20.
    Mühleisen M, Probst W, Hayashi K, Rahmann H (1983) Calcium binding to liposomes composed of negatively charged lipid moieties. Jap J Exp Med 53: 103–107PubMedGoogle Scholar
  21. 21.
    Hinz HJ, Körner O, Nicolau C (1981) Influence of gangliosides GM1 and GD1a on structural and thermotropic properties of sonicated small 1,2-dipalmitoyl-L- phosphatidylcholine vesicles. Biochim Biophys Acta 643: 557–571PubMedCrossRefGoogle Scholar
  22. 22.
    Sela BA, Bach D (1984) Calorimetric studies on the interaction of gangliosides with phospholipids and myelin basic protein. Biochim Biophys Acta 771: 177–182PubMedCrossRefGoogle Scholar
  23. 23.
    Goins B, Freire E (1985) Lipid phase separations induced by the association of cholera toxin to phospholipid membranes containing ganglioside GM1. Biochemistry 24: 1791–1797PubMedCrossRefGoogle Scholar
  24. 24.
    Myers M, Wortman C, Freire E (1984) Modulation of neuramini dase activity by the physical state of phospholipid bi-layers containing gangliosides GD1a and GT1b. Biochemistry 23: 1442–1448PubMedCrossRefGoogle Scholar
  25. 25.
    Sharom FJ, Grant CWM (1978) A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta 507: 280–293PubMedCrossRefGoogle Scholar
  26. 26.
    Leskawa KC, Rosenberg A (1981) The organization of gangli osides and other lipid components in synaptosomal plasma membranes and modifying effects of calcium ion. Cell Molec Neurobiol 1: 373–388PubMedCrossRefGoogle Scholar
  27. 27.
    Bertoli E, Masserini M, Sonnino S, Ghidoni R, Cestaro B, Tettamanti G (1981) Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg PC vesicles containing gangliosides. Biochim Biophys Acta 467: 196–202Google Scholar
  28. 28.
    Peters MW, Barber KR, Grant CWM (1984) Lateral distribution of gangliosides in bilayer membranes: Lipid and ionic effects. J Neurosci Res 12: 343–353PubMedCrossRefGoogle Scholar
  29. 29.
    Goins B, Masserini M, Barisas BG, Freire E (1986) Laterial diffusion of ganglioside GM1 in phospholipid bilayer membranes. Biophys J 49: 849–856PubMedCrossRefGoogle Scholar
  30. 30.
    Probst W, Möbius D, Rahmann H (1984) Modulatory effects of different temperatures and Ca2+ concentrations on gangliosides and phospholipids in monolayers at air/water interfaces and their possible functional role. Cell Molec Neurobiol 4: 157–176PubMedCrossRefGoogle Scholar
  31. 31.
    Maggio B, Cumar FA, Caputto R (1980) Configuration and in teractions of the polar head group in gangliosides. Biochem J 189: 435–440PubMedGoogle Scholar
  32. 32.
    Beitinger H, Probst W, Rahmann H, Schwarzmann G, Möbius D (1986) Influence of Ca2+ and temperature changes on the surface requirement of gangliosides and phospholipids in monolayers. In: Gangliosides and Modulation of Neuronal Functions. Rahmann H (ed) Springer Heidelberg, New YorkGoogle Scholar
  33. 33.
    Wörner M, Rau H, Probst W, Rahmann H (1987) Stability of ganglioside layers at a liquid/liquid interface. The water/mercury phase boundary as a model. A Polarographie study of the Ca2+-effects. In: Gangliosides and Modulation of Neuronal Functions. Rahmann H (ed) Springer Heidelberg, New YorkGoogle Scholar
  34. 34.
    Brewer GJ, Thomas PD (1984) Role of gangliosides in adhesion and conductance changes in large spherical model membranes. Biochim Biophys Acta 776: 279–287PubMedCrossRefGoogle Scholar
  35. 35.
    McDaniel R, McLaughlin S (1985) The interaction of calcium with gangliosides in bilayer membranes. Biochim Biophys Acta 819: 153–160PubMedCrossRefGoogle Scholar
  36. 36.
    McDaniel R, Sharp K, Brooks D, McLaughlin A, Wnisky AP, Cafiso D, McLaughlin S (1986) Electrokinetik and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1b. Biophys H 49: 741–752CrossRefGoogle Scholar
  37. 37.
    Rahmann H (1986) Brain gangliosides, bio-electrical activity and poststimulation effects. In: Gangliosides and modulation of Neuronal Functions. Rahmann H (ed) Springer Heidelberg, New YorkGoogle Scholar
  38. 38.
    Tsuji S, Nakajima J, Sasaki T, Nagai Y (1985) Bioactive gangliosides. IV. Ganglioside GQ1b/Ca2+-dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J Biochem 97: 969–972PubMedGoogle Scholar
  39. 39.
    Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ (1985) Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem 44: 1229–1234PubMedCrossRefGoogle Scholar
  40. 40.
    Hollmann M, Seifert W (1986) Ganglioside modulate glutamate receptor binding in rat brain synaptic plasma membranes. Neurosci Letters 65: 133–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Probst
    • 1
  • H. Rahmann
    • 1
  1. 1.Institute of ZoologyUniversity of Stuttgart-HohenheimStuttgart 70Germany

Personalised recommendations