Advertisement

Brain Gangliosides and Neurological Mutants

  • Nicole A. Baumann
  • M. L. Harpin
  • A. Baron-Van Evercooren
  • M. Iwamori
  • Yves Maurin
Part of the NATO ASI Series book series (volume 7)

Abstract

Modifications of glycolipids occur during development. Some glycosphingolipids are known to be stage-specific antigens during embryogenesis.Numerous surface antigens developmentally regulated and detected by monoclonal antibodies are glycosphingolipids,some of which being minor components of a cell. Striking modifications of the ganglioside profile occur during development of the nervous system; some of them appear to be linked to cellular proliferation (1), others to neuronal differentiation (1,2), and to myelinogenesis(3,4). Thus it is likely that,in the nervous system,these glycolipids play a role in mechanisms of cell-cell recognition and communication, hormone-receptor or growth factor-receptor interactions.

Keywords

Purkinje Cell Schwann Cell Myelin Basic Protein Neural Cell Adhesion Molecule Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yavin E, Yavin Z (1979) Ganglioside profiles during neural tissue development. Acquisition in the prenatal rat brain and cerebral cell cultures. Neuroscience 2: 25–37.Google Scholar
  2. 2.
    Yusuf HKM, Dickerson JWT (1978) Disialoganglioside GD1a of rat brain subcellular particles during development. Biochem J: 174, 655–657.PubMedGoogle Scholar
  3. 3.
    Suzuki K, Poduslo SE, Norton WT (1967) Gangliosides in the myelin fraction of developing rats. Biochim Biophys Acta 144: 375–381.PubMedGoogle Scholar
  4. 4.
    Suzuki K, Poduslo JF, Poduslo SE (1968) Further evidence for a specific ganglioside fraction closely asociated with myelin. Biochim Biophys Acta 152: 576–586.PubMedGoogle Scholar
  5. 5.
    Baumann N, Lachapelle F (1982) Neurological mutants in Handbook of Neurochemistry (Lajtha A ed) vol 2:253–279 Plenum Press New-York.Google Scholar
  6. 6.
    Baumann N (1980) Mutations affecting myelination in the central nervous system:research tools in neurobiology. Trends Neurosci 3: 82–85CrossRefGoogle Scholar
  7. 7.
    Dautigny A, Mattel MG, Morello T, Alliel PM, Pham-Dinh D, Amar L, Arnaud D, Simon D, Mattel JF, Guenet JL, Jolles P, Avner P. (1986) The structural gene coding for proeteolipid gene is mutated in jimpy mice. Nature 321: 867–869.PubMedCrossRefGoogle Scholar
  8. 8.
    Privat A, Jacque C, Bourre JM, Dupouey P,Baumann N (1980) Absence of the major dense line in myelin of the mutant mouse shiverer.Neurosci Lett 12: 107–112.Google Scholar
  9. 9.
    Dupouey P,Jacque C,Bourre JM,Cesselin F,Privat A,Baumann N (1980) Immunohistochemical localization of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett 12: 113–118CrossRefGoogle Scholar
  10. 10.
    Roach A, Boylan K, Horvath S, Prusiner SB, Hood LE (1983) Characterization of cloned cDNA representing rat myelin basic protein: absence of expression inbrain of shiverer mutant mice. Cell 34: 799–806.PubMedCrossRefGoogle Scholar
  11. 11.
    Baumann N,Harpin ML,Jacque C (1980) Brain gangliosides in the shiverer mutant mouse.Comparison with other dysmyelinated mutants,quaking and jimpy in INSERM symposium 14: Neurological mutations affecting myelination (Baumann N ed) pp 257–262 Elsevier-North Holland Amsterdam.Google Scholar
  12. 12.
    Seyfried TN.Glaser GH, Yu RK (1979) Genetic variability for regional brain gangliosides in five strains of young mice Biochem Genet 17: 43–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Iwamori M,Harpin ML, Lachapelle F, Baumann N (1985) Brain gangliosides of quaking and shiverer mutants:qualitative and quantitative changes of monosialogangliosides in quaking brain J Neurochem 45: 73–78PubMedCrossRefGoogle Scholar
  14. 14.
    Sbaschnig-Agler M, Cammer W, Ledeen RW (1985) Ganglioside changes in sciatic myelin of the shiverer mouse. Trans Am Soc Neurochem 16: 233.Google Scholar
  15. 15.
    Linnemann D, Lyles JM, Bock E (1985) A developmental study of the biosynthesis of neural cell adhesion molecule. Dev.Neurosci 7: 230–238PubMedCrossRefGoogle Scholar
  16. 16.
    Noble M,Albrechtsen MM,Moller C,Lyles J,Bock E,Goridis C,Watanabe M, Rutishauser U (1985) Glial cells express N-CAM/D2-CAM like polypeptides in vitro Nature 316: 725–728PubMedCrossRefGoogle Scholar
  17. 17.
    Eisenbarth GS,Walsh FS,Nirenberg M (1979) Monoclonal antibody to a plasma membrane antigen of neurons Proc Nat Acad Sci USA 76: 4913–4917.PubMedCrossRefGoogle Scholar
  18. 18.
    Kasai N, Yu RK (1983) The monoclonal antibody A2B5 is specific to ganglioside GQIc Brain Res 277: 155–158.PubMedCrossRefGoogle Scholar
  19. 19.
    Fredman P, Magnani JL;Nirenberg M,Ginsburg V (1984) Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue. Arch Biochem Biophys. 233: 661–666.Google Scholar
  20. 20.
    Jorgensen OS (1985) The embryonic form of D2-protein (N-CAM) is linked to A2B5-binding polysialoganglioside-like carbohydrates J.Neurochem.44,Suppl.Abst S 33 C.Google Scholar
  21. 21.
    Harpin ML, Coulon-Morelec MJ, Yeni P, Danon F, Baumann N (1985)Direct sensitive immunocharacterization of gangliosides on plastic thin-layer plates using peroxidase staining. J Immunol Meth 78: 135–141CrossRefGoogle Scholar
  22. 22.
    Perkins CS,Aguayo AJ,Bray GM (1980)Schwann cell multiplication in Trembler mouse Neuropathol Appl Neurobiol 7:115CrossRefGoogle Scholar
  23. 23.
    Harpin ML,Portoukalian J,Baumann N (1982) Modifications of ganglioside composition in peripheral nerve of myelin deficient trembler mutant mouse Neurochemical Res 7: 1367–1373.CrossRefGoogle Scholar
  24. 24.
    Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons Neuroscience 5, 1647–1655PubMedCrossRefGoogle Scholar
  25. 25.
    Robert J, Rebel G, Mandel P (1977) Glycosphingolipids from cultured astroblasts J Lipid Res 18, 517–522.PubMedGoogle Scholar
  26. 26.
    Pukel CS, Lloyd KO, Travassos LR, Dippold Wg, Oettgen HF, Lloyd JO (1982) GD3, a prominent ganglioside of human melanoma J exp med 155: 1133–1147PubMedCrossRefGoogle Scholar
  27. 27.
    Siddiqui, B, Buehler J, DeGregorio MW, Macher BA (1984) Differential expression of ganglioside GD3 by human leukocytes and leukemia cells Cancer Res 44: 5262–5265.PubMedGoogle Scholar
  28. 28.
    Hogan EL, Greenfield S (1984)Animal models of genetic disorders of myelin in Myelin (Morell P ed) pp489–534 Plenum Press New-York.Google Scholar
  29. 29.
    Dentinger P, Barron KD, Csiza K (1982) Ultrastructure of the central nervous system in a myelin deficient rat J.Neurocytol 11: 671–691PubMedCrossRefGoogle Scholar
  30. 30.
    Griffiths IR, Duncan ID, McCulloch M, Harvey MJA (1981) Shaking pups: a disorder of central myelination in the spaniel dog. 1.Clinical.genetic and light microscopic observations J Neurol Sci 50: 423–433PubMedCrossRefGoogle Scholar
  31. 31.
    Sena A, Rebel G, Bieth R., Hubert P. Waksman A.0982) Lipid composition in liver and brain of genetically obese (ob/ob),heterozygote(ob/+)and normal (+/+)mice.Biochim Biophys Acta 710 290–296Google Scholar
  32. 32.
    Sena A. Sarlieve LL. Robel G (1985) Brain myelin of genetically obese mice J Neurol Sci 68: 233–244PubMedCrossRefGoogle Scholar
  33. 33.
    Seyfried TN, Yu RK, Miyazawa N (1982) Differential cellular enrichment of gangliosides in the mouse cerebellum:analysis using neurological mutants J Neurochem 38: 551–559PubMedCrossRefGoogle Scholar
  34. 34.
    Rakic P. Sidman RL (1973) Sequence of developmental abnormalities leading to granule cell deficit in the cerebellar cortex of weaver mutant mice J Comp Neurol 152: 103–132PubMedCrossRefGoogle Scholar
  35. 35.
    Willinger M (1981) The expression of GM1 ganglioside during neuronal differentiation in Gangliosides inneurological and neuromuscular function,development and repair (Rapport MM, Gorio A eds) pp 17–27, Raven Press New-YorkGoogle Scholar
  36. 36.
    Irwin LN, Hunter GD. Crandall JE, McCluer RH (1985) Ganglioside patterns during cerebral development in the normal and reeler mouse. J Neurosci Res 13: 591–597PubMedCrossRefGoogle Scholar
  37. 37.
    Argov Z, Navon R (1984) Clinical and genetic variations in the syndrome of adult GM2 gangliosidosis resulting from hexosaminidase A deficiency. Ann Neurol. 16: 14–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Seyfried TN, Glaser GH, Yu RK (1978) Cerebral.Cerebellar and brain stem gangliosides in mice susceptible to audiogenic seizures J Neurochem 31: 21–27PubMedCrossRefGoogle Scholar
  39. 39.
    Seyfried TN, Glaser GH, Yu RK (1979) Influence of the cribriform degeneration (cri) mutation on audiogenic seizures in DBA/2J mice.Exp Neurol 63: 643–646Google Scholar
  40. 40.
    Seyfried TN, Yu RK (1979) Genetic study of cerebrosides and gangliosides in the developing mouse brain Trans Am Soc Neurochem 10, 93Google Scholar
  41. 41.
    Baker HJ, Mooole JA, Lindsey JR, Creel RM (1976) Animal models of human ganglioside storage diseases Fed Proc 35: 1193–1201PubMedGoogle Scholar
  42. 42.
    Purpura DP, Walkley SU (1981) Aberrant neurite and spine generation in mature neurons in the gangliosidoses in Gangliosides in neurological and neuromuscular function,development and repair (Rapport MM,Gorio A eds) pp 1–16 Raven Press New-YorkGoogle Scholar
  43. 43.
    Cork L, Munnell JF, Lorenz MD, Murphy JV, Baker HJ, Rattazzi MC (1977) GM2-gang1iosidose lysosomal storage disease in cats with hexosaminidase deficiency Science 196: 1014–1017.PubMedCrossRefGoogle Scholar
  44. 44.
    Jope RS, Baker HJ, Connor DJ (1985) Increased acetylcholine synthesis and release in brains of cats with GM1-gangliosidosis. J Neurochem 46: 1567–1572.CrossRefGoogle Scholar
  45. 45.
    Pentchev PG, Boothe AD, Kruth HS, Stivers J, Brady RO (1984) A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol J Biol Chem 259: 5784–5791PubMedGoogle Scholar
  46. 46.
    Weintraub H, Abramovici A, Sandbank U, Pentchev PG, Brady RO, Sekine M, Suzuki A, Sela B (1985) Neurological mutation characterized by dysmyelination in NCTR-Balb/C mouse with lysosomal lipid storage disease J Neurochem 45: 665–672.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Nicole A. Baumann
    • 1
  • M. L. Harpin
    • 1
  • A. Baron-Van Evercooren
    • 1
  • M. Iwamori
    • 2
  • Yves Maurin
    • 1
  1. 1.Laboratoire de Neurochimie, INSERM U 134Hôpital de la SalpêtrièreParis cedex 13France
  2. 2.Department of BiochemistryUniversity of TokyoShinju-kuJapan

Personalised recommendations