Fundamentals of the Biological Properties of Sialic Acids

  • R. Schauer
  • G. Reuter
Part of the NATO ASI Series book series (volume 7)


The fundamental importance of carbohydrates on the outer cell membrane is well established. They are responsible for the interaction of cells with other cells and molecules and thus regulate the social behaviour and other functions of mobile and resident cells of organisms. As components on the surface of mammalian cells they occur linked to protein or lipid which are in turn anchored in the lipid bilayer of the cell membrane. There carbohydrates can cover distinct surface areas and thus modulate potential functions of membrane components or serve as receptors of external molecules. As sialic acids in most cases are in terminal position of glycoconjugates, these sugars play an important role in membrane functions.


Sialic Acid Migration Inhibitory Factor Newcastle Disease Virus Neuraminic Acid Sialidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schauer R, Corfield AP (1982) Occurrence of Sialic Acids. In: Sialic Acids - Chemistry, Metabolism and Function (Schauer R, ed) Cell Biol Monogr 10: 5–50Google Scholar
  2. 2.
    Reuter G. Pfeil R, Stoll S, Schauer R, Kamerling JP, Versluis C, Vliegenthart JFG (1983) Identification of new sialic acids derived from glycoprotein of bovine submandibular gland. Eur J Biochem 134: 139–143Google Scholar
  3. 3.
    Ledeen RW, Yu RK (1982) Gangliosides: Structure, isolation, and analysis. Methods Enzymol 83: 139–191PubMedCrossRefGoogle Scholar
  4. 4.
    Kanfer JN, Hakomori S-i (eds) (1983) Sphingolipid Biochemistry, Handbook Lipid Res Vol 3. Plenum Press New York LondonGoogle Scholar
  5. 5.
    Wiegandt H (ed) (1985) Glycolipids, New Comprehensive Biochemistry Vol 10 Elsevier Amsterdam New York LondonGoogle Scholar
  6. 6.
    Ghidoni R, Sonnino S, Tettamanti G, Baumann N, Reuter G, Schauer R (1980) Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-0-acetyl-N-acetylneuraminic acid. J Biol Chem 255: 6990–6995PubMedGoogle Scholar
  7. 7.
    Chigorno V, Sonnino S, Ghidoni R, Tettamanti G (1982) Isolation and characterization of a tetrasialoganglioside from mouse brain, containing 9-0-acetyl, N-acetylneuraminic acid. Neurochem Int 4: 531–539PubMedCrossRefGoogle Scholar
  8. 8.
    Gowda DC, Reuter G, Shukla AK, Schauer R (1984) Identification of a disialoganglioside (GD1a) containing terminal N-acetyl-9-0-acetylneur- aminic acid in rat erythrocytes. Hoppe-Seyler’s Z Physiol Chem 365: 1247–1253PubMedCrossRefGoogle Scholar
  9. 9.
    Thurin J, Herlyn M, Hindsgaul 0, Strömberg N, Karlsson K-A, Elder D, Steplewski Z, Koprowski H (1985) Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-0-acetyl-GD3. J Biol Chem 260: 14556–14563PubMedGoogle Scholar
  10. 10.
    Hakomori S-I, Saito T (1969) Isolation and characterization of a glycosphingolipid having a new sialic acid. Biochemistry 8: 5082–5088PubMedCrossRefGoogle Scholar
  11. 11.
    Veh RW, Sander M, Haverkamp J, Schauer R (1979) Demonstration of 0-acetyl groups in ganglioside-bound sialic acids and their effect on the action of bacterial and mammalian neuraminidases. Glycoconj Res (Gregory JD, Jeanloz RW eds) Vol 1, 557–559. Academic Press New YorkGoogle Scholar
  12. 12.
    Kochetkov NK, Smirnova GP, Chekareva NV (1976) Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim Biophys Acta 424: 274–283PubMedGoogle Scholar
  13. 13.
    Sugita M (1979) Studies on the glycosphingolipids of the starfish Aste- rina pectinifera. J Biochem 86: 765–772PubMedGoogle Scholar
  14. 14.
    Nadano D, Iwasaki M, Endo S, Kitajima K, Inoue S, Inoue Y (1986) A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto- nonulosonic acid (KDN) J Biol Chem 261: 11550–11557PubMedGoogle Scholar
  15. 15.
    Higashi H, Hirabayashi Y, Fukui Y, Naiki M, Matsumoto M, Ueda S, Kato S (1985) Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res 45: 3796–3802PubMedGoogle Scholar
  16. 16.
    Shukla AK, Schröder C, Nöhle U, Schauer R (1987) 0-Acylated unsaturated sialic acids - natural occurrence and chemical preparation. Carbohydr Res, in pressGoogle Scholar
  17. 17.
    Schauer R (1978) Characterization of sialic acids. Methods Enzymol 50: 64–89PubMedCrossRefGoogle Scholar
  18. 18.
    Schauer R (1987) Analysis of sialic acids. Methods Enzymol 138: 132–161PubMedCrossRefGoogle Scholar
  19. 19.
    Shukla AK, Schauer R (1982) Analysis of N,0-acylated neuraminic acids by high-performance liquid anion-exchange chromatography. J Chromatogr 244: 81–89CrossRefGoogle Scholar
  20. 20.
    Reuter G, Schauer R (1986) Comparison of electron and chemical ionization mass spectrometry of sialic acids. Anal Biochem 157: 39–46PubMedCrossRefGoogle Scholar
  21. 21.
    Kamerling JP, Vliegenthart JFG (1982) Gas-liquid chromatography and mass spectrometry of sialic acids. Cell Biol Monogr 10: 95–125Google Scholar
  22. 22.
    Vliegenthart JFG, Dorland L, van Haibeek H, Haverkamp J (1982) NMR spectroscopy of sialic acids. Cell Biol Monogr 10: 127–172Google Scholar
  23. 23.
    Haverkamp J, van Haibeek H, Dorlaqd L, Vliegenthart JFG, Pfeil R, Schauer R (1982) High-resolution H-NMR spectroscopy of free and glycosidically linked 0-acetylated sialic acids. Eur J Biochem 122: 305–311PubMedCrossRefGoogle Scholar
  24. 24.
    Schauer R (1987) Metabolism of 0-acetyl groups of sialic acids. Methods Enzymol 138: 611–626PubMedCrossRefGoogle Scholar
  25. 25.
    Schauer R (1982) Chemistry, metabolism and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40: 131–234PubMedCrossRefGoogle Scholar
  26. 26.
    Shukla AK, Schauer R (1986) Analysis of sialidase and N-acetylneuraminate pyruvatelyase substrate specificity by high-performance liquid chromatography. Anal Biochem 158: 158–164PubMedCrossRefGoogle Scholar
  27. 27.
    Corfield AP, Schauer R (1982) Metabolism of sialic acids. Cell Biol Monogr 10: 195–261Google Scholar
  28. 28.
    Savage AV, Koppen PL, Schiphorst WECM, Trippelvitz LAW, van Haibeek H, Vliegenthart JFG, van den Eijnden DH (1986) Porcine submaxillary mucin contains α2->3 and α2->6-linked N-acetyl- and N-glycolyl-neuraminic acid. Eur J Biochem 160: 123–129PubMedCrossRefGoogle Scholar
  29. 29.
    Roseman S, Jourdian GW, Watson D, Rood R (1961) Enzymatic synthesis of sialic acid 9-phosphates. Proc Natl Acad Sei USA 47: 958–961CrossRefGoogle Scholar
  30. 30.
    Yu RK, Ando S (1980) Structures of some new complex gangliosides of fish brain. Adv Exp Med Biol 125: 33–45PubMedGoogle Scholar
  31. 31.
    Beau J-M, Schauer R, Haverkamp J, Kamerling JP, Dorland L, Vliegenthart JFG (1984) Chemical behaviour of cytidine-5′-monophospho-ß-D-N-acetylneuraminic acid (CMP-Neu5Ac) under neutral and alkaline conditions. Eur J Biochem 140: 203–208PubMedCrossRefGoogle Scholar
  32. 32.
    Saito M, Rosenberg A (1984) Identification and characterization of N-ace- tyl-2,3-didehydro-2-deoxyneuraminic acid as a metabolite in mammalian brain. Biochemistry 23: 3784–3788PubMedCrossRefGoogle Scholar
  33. 33.
    Corfield AP, Sander-Wewer M, Veh RW, Wember M, Schauer R (1986) The action of sialidases on substrates containing 0-acetyl sialic acids. Biol Chem Hoppe-Seyler 367: 433–439PubMedCrossRefGoogle Scholar
  34. 34.
    Shukla AK, Schauer R (1983) Isolation from equine liver and characterization of an esterase hydrolyzing sialic acid 0-acetyl groups. Glycocon- jugates, Proc 7th Int Symp, 436-437 Rahms LundGoogle Scholar
  35. 35.
    Herrler G, Rott R, Klenk H-D, Müller H-P, Shukla AK, Schauer R (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-0-acetyl- esterase. Embo J 4: 1503–1506PubMedGoogle Scholar
  36. 36.
    Michalski J-C, Corfield AP, Schauer R (1986) Properties of human liver lysosomal sialidase. Biol Chem Hoppe-Seyler 367: 715–722PubMedCrossRefGoogle Scholar
  37. 37.
    Schauer R, Veh RW, Sander M, Corfield AP, Wiegandt H (1980) “Neuraminidase-resistant” sialic acid residues of gangliosides. Adv Exp Med Biol 125:283–294PubMedGoogle Scholar
  38. 38.
    Corfield AP, Schauer R, Dorland L, Vliegenthart JFG, Wiegandt H (1985) Studies on the interaction of Clostridium perfringens sialidase with sialic acid linked to the internal galactose in monosialogangliotetraosyl ceramide. J Biochem 97: 449–461PubMedGoogle Scholar
  39. 39.
    Dorland L, van Haibeek H, Vliegenthart JFG, Schauer R, Wiegandt H (1986) A 500-MHz H-N.M.R. study of oligosaccharides derived from gangliosides by ozonolysis-alkaline fragmentation. Carbohydr Res 151: 233–245PubMedCrossRefGoogle Scholar
  40. 40.
    Schauer R (1985) Sialic acids and their roles as biological masks. Trends Biochem Sci 10: 357–360CrossRefGoogle Scholar
  41. 41.
    Schauer R, Shukla AK, Schröder C, Müller E (1984) The anti-recognition function of sialic acids: studies with erythrocytes and macrophages. Pure Appl Chem 56: 907–921CrossRefGoogle Scholar
  42. 42.
    Ashwell G, Morel 1 AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41: 99–128PubMedGoogle Scholar
  43. 43.
    Keim S, Jibril S, Lee H, Yoshino T, Schauer R (1986) The galactose receptor of rat peritoneal macrophages: binding of sialidase-treated blood cells and glyoproteins. Lectins, Biology, Biochemistry, Clinical Biochemistry (Bog-Hansen TC, van Driessche E, eds) Vol 5, 221–228, Walter de Gruyter Berlin New YorkGoogle Scholar
  44. 44.
    Keim S, Shukla AK, Paulson JC, Schauer R (1986) Reconstitution of the masking effect of sialic acid groups on sialidase-treated erythrocytes by the action of sialytransferases. Carbohydr Res 149: 59–64CrossRefGoogle Scholar
  45. 45.
    Lee RT, Lin P, Lee YC (1984) New synthetic cluster ligands for galactose/ N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 23: 4255–4261PubMedCrossRefGoogle Scholar
  46. 46.
    Harford J, Klausner RD, Ashwell G (1984) Inhibition of the endocytic pathway for asialoglycoprotein catabolism. Biol Cell 51: 173–180PubMedGoogle Scholar
  47. 47.
    Ruhenstroth-Bauer G, Goldberg M, Vogl S (1984) Regulation of hepatocyte proliferation. Naturwissenschaften 71: 404–407PubMedCrossRefGoogle Scholar
  48. 48.
    Ücer U, Engel W (1981) The effects of neuraminidase and gangliosides on ovarian LH/hCG receptors during rat development. Differentiation 20:162–167PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor PV, Hancock KN (1979) Effect of neuraminidase on immunogenicity of early mouse trophoblast. Transplantation 28: 256–257PubMedCrossRefGoogle Scholar
  50. 50.
    Jacobsen F (1982) Increase of the in vitro complement-dependent cytoto¬xicity against autologous invasive human bladder tumor cells by neuraminidase treatment. Acta path microbiol immunol scand Sect C 90: 187–192Google Scholar
  51. 51.
    Schauer R, Sander-Wewer M, Gutschker-Gdaniec GHM, Roggentin P, Randow EA, Hobrecht R (1985) Sialidase activity in the sera of patients and rabbits with clostridial myonecrosis. Clin Chim Acta 146: 119–127PubMedCrossRefGoogle Scholar
  52. 52.
    Esievo KAN, Saror DI, Tulpule SS (1981) High sialic acid content of camel’s erythrocytes. Vet Record 109: 414CrossRefGoogle Scholar
  53. 53.
    Huang RTC, Dietsch E, Rott R (1985) Further studies on the role of neur¬aminidase and the mechanism of low pH dependence in influenza virus-in¬duced membrane fusion. J Gen Virol 66: 295–301PubMedCrossRefGoogle Scholar
  54. 54.
    Rogers GN, Herrler G, Paulson JC, Klenk H-D (1986) Influenza C virus uses 9-0-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J Biol Chem 261: 5947–5951PubMedGoogle Scholar
  55. 55.
    Herrler G, Reuter G, Rott R, Klenk H-D, Schauer R (1987) 9-0-Acetyl-N- acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol Chem Hoppe-Seyler, submitted for publicationGoogle Scholar
  56. 56.
    Faillard H, Cabezas JA (1963) Isolierung von N-Acetyl- und N-Glycolyl- neuraminsäure aus Kälber- und Hühnerserum. Hoppe-Seyler’s Z Physiol Chem 333: 266–271PubMedCrossRefGoogle Scholar
  57. 57.
    Bouhours D, Bouhours J-F (1983) Developmental changes of hematoside of rat small intestine. J Biol Chem 258: 299–304PubMedGoogle Scholar
  58. 58.
    Suzuki Y, Suzuki T, Matsunaga M, Matsumoto M (1985) Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai Virus) and Newcastle Disease Virus. J Biochem 97: 1189–1199PubMedGoogle Scholar
  59. 59.
    Markwell MAK, Portner A, Schwartz A (1985) An alternative route of infection for viruses: Entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc Natl Acad Sci USA 82: 978–982PubMedCrossRefGoogle Scholar
  60. 60.
    Superti F, Hauttecoeur B, Morelec M-J, Goldoni P, Bizzini B, Tsiang H (1986) Involvement of gangliosides in rabies virus infection. J gen Virol 67: 47–56PubMedCrossRefGoogle Scholar
  61. 61.
    Parkkinen J, Rogers GN, Korhonen T, Dahr W, Finne J (1986) Identification of the 0-linked sialyloligosaccharides of glycophorin A as the erythro- receptors for S-fimbriated Escherichia coli. Infec Immun 54: 37–42Google Scholar
  62. 62.
    Murray PA, Levine MJ, Reddy MS, Tabak LA, Bergey EJ (1986) Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infec Immun 53: 359–365Google Scholar
  63. 63.
    Loomes LM, Uemura K-i, Childs RA, Paulson JC, Rogers GN, Scudder PR, Michalski J-C, Hounsell EF, Taylor-Robinson D, Feizi T (1984) Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type. Nature 307: 560–563PubMedCrossRefGoogle Scholar
  64. 64.
    Csete M, Lev BI, Pereira MEA (1985) An influenza virus model for Trypanosoma cruzi infection: Interactive roles for neuraminidase and lectin. Curr Top Microbiol Immunol 117: 153–165PubMedCrossRefGoogle Scholar
  65. 65.
    Pereira MEA, Hoff R (1986) Heterogeneous distribution of neuraminidase activity in strains and clones of Trypanosoma cruzi and its possible association with parasite myotropism. Mol Biochem Parasitol 20: 183–189PubMedCrossRefGoogle Scholar
  66. 66.
    Esievo KAN (1983) Trypanosoma vivax, stock V953: Inhibitory effect of type A influenza virus anti-HAV8 serum on in vitro neuraminidase (sialidase) activity. J Parasitol 69: 491–495PubMedCrossRefGoogle Scholar
  67. 67.
    Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes. Trends Biochem Sci 11: 314–317CrossRefGoogle Scholar
  68. 68.
    Svennerholm L (1976) Interaction of cholera toxin and ganglioside 6M1. Adv Exp Med Biol 71: 191–204PubMedGoogle Scholar
  69. 69.
    van Heyningen WE, King CA (1976) The role of gangliosides in the action of cholerae toxin. Adv Exp Med Biol 71: 205–214PubMedGoogle Scholar
  70. 70.
    Liu DY, Yu S-F, Remold HG, David JR (1985) Glycolipid receptor for human migration inhibitory factor: Fucose and sialic acid are important for the human monocyte response to migration inhibitory factor. Cell Immunol 90: 539–546PubMedCrossRefGoogle Scholar
  71. 71.
    Rahmann H, Probst W, Mühleisen M (1982) Gangliosides and synaptic transmission. Japan J Exp Med 52: 275–286Google Scholar
  72. 72.
    Rosen SD, Singer MS, Yednock TA, Stoolman LM (1985) Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228: 1005–1007PubMedCrossRefGoogle Scholar
  73. 73.
    Murayama K, Levery SB, Schirrmacher V, Hakomori S-i (1986) Qualitative differences in position of sialylation and surface expression of glycolipids between murine lymphomas with low metastatic (Eb) and high metastatic (Esb) potentials and isolation of a novel disialoganglioside (GD1a) from Eb cells. Cancer Res 46: 1395–1402PubMedGoogle Scholar
  74. 74.
    Schröder C, Nöhle U, Shukla AK, Schauer R (1983) Improved methods for the isolation and structural analysis of N-glycolylneuraminic acid in man. Glycoconjugates, Proc 7th Int Symp, 162–163, Rahms LundGoogle Scholar
  75. 75.
    Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA (1984) A monoclonal antibody recognizes an 0-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259: 7453–7459PubMedGoogle Scholar
  76. 76.
    Jennings HJ, Katzenellenbogen E, Lugowski C, Michon F, Roy R, Kasper DL (1984) Structure, conformation and immunology of sialic acid-containing polysaccharides of human pathogenic bacteria. Pure Appl Chem 56: 893–905CrossRefGoogle Scholar
  77. 77.
    Kabat EA, Nickerson KG, Liao J, Grossbard L, Osserman EF, Glickman E, Chess L, Robbins JB, Schneerson R, Yang Y (1986) A human monoclonal macroglobulin with specificity for a(2->8)-linked poly-N-acetyl neuraminic acid, the capsular polysaccharide of group B meningococci and Escherichia coli K1, which crossreacts with polynucleotides and with denatured DNA. J Exp Med 164: 642–654PubMedCrossRefGoogle Scholar
  78. 78.
    Finne J (1985) Polysialic acid - a glycoprotein carbohydrate involved in neural adhesion and bacterial meningitis. Trends Biochem Sci 10: 129–132CrossRefGoogle Scholar
  79. 79.
    Orskov F, 0rskov I, Sutton A, Schneerson R, Lin W, Egan W, Hoff GE, Robbings JB (1979) Form variation in E. coli K1: Determined by 0-acetylation of the capsular polysaccharide. J Exp Med 149: 669–685Google Scholar
  80. 80.
    Anstee DJ (1981) The blood group MNSs-active sialoglycoproteins. Semin Hematol 18: 13–31PubMedGoogle Scholar
  81. 81.
    Roelcke D (1984) Kälteagglutinine: Humane monoklonale Antikörper gegen Glykokonjugat-Antigene von Zelloberflächen. Funkt Biol Med 3: 106 - 127Google Scholar
  82. 82.
    Fischer K, Poschmann A (1976) Neuraminidase-induced hemolytic anemia - diagnostic and therapeutic guidelines. Dtsch Med Wochenschr 101: 1731–1733PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. Schauer
    • 1
  • G. Reuter
    • 1
  1. 1.Biochemisches InstitutChristian-Albrechts-UniversitätKielGermany

Personalised recommendations