Skip to main content

Fundamentals of the Biological Properties of Sialic Acids

  • Conference paper
Gangliosides and Modulation of Neuronal Functions

Part of the book series: NATO ASI Series ((ASIH,volume 7))

Abstract

The fundamental importance of carbohydrates on the outer cell membrane is well established. They are responsible for the interaction of cells with other cells and molecules and thus regulate the social behaviour and other functions of mobile and resident cells of organisms. As components on the surface of mammalian cells they occur linked to protein or lipid which are in turn anchored in the lipid bilayer of the cell membrane. There carbohydrates can cover distinct surface areas and thus modulate potential functions of membrane components or serve as receptors of external molecules. As sialic acids in most cases are in terminal position of glycoconjugates, these sugars play an important role in membrane functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schauer R, Corfield AP (1982) Occurrence of Sialic Acids. In: Sialic Acids - Chemistry, Metabolism and Function (Schauer R, ed) Cell Biol Monogr 10: 5–50

    Google Scholar 

  2. Reuter G. Pfeil R, Stoll S, Schauer R, Kamerling JP, Versluis C, Vliegenthart JFG (1983) Identification of new sialic acids derived from glycoprotein of bovine submandibular gland. Eur J Biochem 134: 139–143

    Google Scholar 

  3. Ledeen RW, Yu RK (1982) Gangliosides: Structure, isolation, and analysis. Methods Enzymol 83: 139–191

    Article  PubMed  CAS  Google Scholar 

  4. Kanfer JN, Hakomori S-i (eds) (1983) Sphingolipid Biochemistry, Handbook Lipid Res Vol 3. Plenum Press New York London

    Google Scholar 

  5. Wiegandt H (ed) (1985) Glycolipids, New Comprehensive Biochemistry Vol 10 Elsevier Amsterdam New York London

    Google Scholar 

  6. Ghidoni R, Sonnino S, Tettamanti G, Baumann N, Reuter G, Schauer R (1980) Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-0-acetyl-N-acetylneuraminic acid. J Biol Chem 255: 6990–6995

    PubMed  CAS  Google Scholar 

  7. Chigorno V, Sonnino S, Ghidoni R, Tettamanti G (1982) Isolation and characterization of a tetrasialoganglioside from mouse brain, containing 9-0-acetyl, N-acetylneuraminic acid. Neurochem Int 4: 531–539

    Article  PubMed  CAS  Google Scholar 

  8. Gowda DC, Reuter G, Shukla AK, Schauer R (1984) Identification of a disialoganglioside (GD1a) containing terminal N-acetyl-9-0-acetylneur- aminic acid in rat erythrocytes. Hoppe-Seyler’s Z Physiol Chem 365: 1247–1253

    Article  PubMed  CAS  Google Scholar 

  9. Thurin J, Herlyn M, Hindsgaul 0, Strömberg N, Karlsson K-A, Elder D, Steplewski Z, Koprowski H (1985) Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-0-acetyl-GD3. J Biol Chem 260: 14556–14563

    PubMed  CAS  Google Scholar 

  10. Hakomori S-I, Saito T (1969) Isolation and characterization of a glycosphingolipid having a new sialic acid. Biochemistry 8: 5082–5088

    Article  PubMed  CAS  Google Scholar 

  11. Veh RW, Sander M, Haverkamp J, Schauer R (1979) Demonstration of 0-acetyl groups in ganglioside-bound sialic acids and their effect on the action of bacterial and mammalian neuraminidases. Glycoconj Res (Gregory JD, Jeanloz RW eds) Vol 1, 557–559. Academic Press New York

    Google Scholar 

  12. Kochetkov NK, Smirnova GP, Chekareva NV (1976) Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim Biophys Acta 424: 274–283

    PubMed  CAS  Google Scholar 

  13. Sugita M (1979) Studies on the glycosphingolipids of the starfish Aste- rina pectinifera. J Biochem 86: 765–772

    PubMed  CAS  Google Scholar 

  14. Nadano D, Iwasaki M, Endo S, Kitajima K, Inoue S, Inoue Y (1986) A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto- nonulosonic acid (KDN) J Biol Chem 261: 11550–11557

    PubMed  CAS  Google Scholar 

  15. Higashi H, Hirabayashi Y, Fukui Y, Naiki M, Matsumoto M, Ueda S, Kato S (1985) Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res 45: 3796–3802

    PubMed  CAS  Google Scholar 

  16. Shukla AK, Schröder C, Nöhle U, Schauer R (1987) 0-Acylated unsaturated sialic acids - natural occurrence and chemical preparation. Carbohydr Res, in press

    Google Scholar 

  17. Schauer R (1978) Characterization of sialic acids. Methods Enzymol 50: 64–89

    Article  PubMed  CAS  Google Scholar 

  18. Schauer R (1987) Analysis of sialic acids. Methods Enzymol 138: 132–161

    Article  PubMed  CAS  Google Scholar 

  19. Shukla AK, Schauer R (1982) Analysis of N,0-acylated neuraminic acids by high-performance liquid anion-exchange chromatography. J Chromatogr 244: 81–89

    Article  CAS  Google Scholar 

  20. Reuter G, Schauer R (1986) Comparison of electron and chemical ionization mass spectrometry of sialic acids. Anal Biochem 157: 39–46

    Article  PubMed  CAS  Google Scholar 

  21. Kamerling JP, Vliegenthart JFG (1982) Gas-liquid chromatography and mass spectrometry of sialic acids. Cell Biol Monogr 10: 95–125

    Google Scholar 

  22. Vliegenthart JFG, Dorland L, van Haibeek H, Haverkamp J (1982) NMR spectroscopy of sialic acids. Cell Biol Monogr 10: 127–172

    Google Scholar 

  23. Haverkamp J, van Haibeek H, Dorlaqd L, Vliegenthart JFG, Pfeil R, Schauer R (1982) High-resolution H-NMR spectroscopy of free and glycosidically linked 0-acetylated sialic acids. Eur J Biochem 122: 305–311

    Article  PubMed  CAS  Google Scholar 

  24. Schauer R (1987) Metabolism of 0-acetyl groups of sialic acids. Methods Enzymol 138: 611–626

    Article  PubMed  CAS  Google Scholar 

  25. Schauer R (1982) Chemistry, metabolism and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40: 131–234

    Article  PubMed  CAS  Google Scholar 

  26. Shukla AK, Schauer R (1986) Analysis of sialidase and N-acetylneuraminate pyruvatelyase substrate specificity by high-performance liquid chromatography. Anal Biochem 158: 158–164

    Article  PubMed  CAS  Google Scholar 

  27. Corfield AP, Schauer R (1982) Metabolism of sialic acids. Cell Biol Monogr 10: 195–261

    Google Scholar 

  28. Savage AV, Koppen PL, Schiphorst WECM, Trippelvitz LAW, van Haibeek H, Vliegenthart JFG, van den Eijnden DH (1986) Porcine submaxillary mucin contains α2->3 and α2->6-linked N-acetyl- and N-glycolyl-neuraminic acid. Eur J Biochem 160: 123–129

    Article  PubMed  CAS  Google Scholar 

  29. Roseman S, Jourdian GW, Watson D, Rood R (1961) Enzymatic synthesis of sialic acid 9-phosphates. Proc Natl Acad Sei USA 47: 958–961

    Article  CAS  Google Scholar 

  30. Yu RK, Ando S (1980) Structures of some new complex gangliosides of fish brain. Adv Exp Med Biol 125: 33–45

    PubMed  CAS  Google Scholar 

  31. Beau J-M, Schauer R, Haverkamp J, Kamerling JP, Dorland L, Vliegenthart JFG (1984) Chemical behaviour of cytidine-5′-monophospho-ß-D-N-acetylneuraminic acid (CMP-Neu5Ac) under neutral and alkaline conditions. Eur J Biochem 140: 203–208

    Article  PubMed  CAS  Google Scholar 

  32. Saito M, Rosenberg A (1984) Identification and characterization of N-ace- tyl-2,3-didehydro-2-deoxyneuraminic acid as a metabolite in mammalian brain. Biochemistry 23: 3784–3788

    Article  PubMed  CAS  Google Scholar 

  33. Corfield AP, Sander-Wewer M, Veh RW, Wember M, Schauer R (1986) The action of sialidases on substrates containing 0-acetyl sialic acids. Biol Chem Hoppe-Seyler 367: 433–439

    Article  PubMed  CAS  Google Scholar 

  34. Shukla AK, Schauer R (1983) Isolation from equine liver and characterization of an esterase hydrolyzing sialic acid 0-acetyl groups. Glycocon- jugates, Proc 7th Int Symp, 436-437 Rahms Lund

    Google Scholar 

  35. Herrler G, Rott R, Klenk H-D, Müller H-P, Shukla AK, Schauer R (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-0-acetyl- esterase. Embo J 4: 1503–1506

    PubMed  CAS  Google Scholar 

  36. Michalski J-C, Corfield AP, Schauer R (1986) Properties of human liver lysosomal sialidase. Biol Chem Hoppe-Seyler 367: 715–722

    Article  PubMed  CAS  Google Scholar 

  37. Schauer R, Veh RW, Sander M, Corfield AP, Wiegandt H (1980) “Neuraminidase-resistant” sialic acid residues of gangliosides. Adv Exp Med Biol 125:283–294

    PubMed  CAS  Google Scholar 

  38. Corfield AP, Schauer R, Dorland L, Vliegenthart JFG, Wiegandt H (1985) Studies on the interaction of Clostridium perfringens sialidase with sialic acid linked to the internal galactose in monosialogangliotetraosyl ceramide. J Biochem 97: 449–461

    PubMed  CAS  Google Scholar 

  39. Dorland L, van Haibeek H, Vliegenthart JFG, Schauer R, Wiegandt H (1986) A 500-MHz H-N.M.R. study of oligosaccharides derived from gangliosides by ozonolysis-alkaline fragmentation. Carbohydr Res 151: 233–245

    Article  PubMed  CAS  Google Scholar 

  40. Schauer R (1985) Sialic acids and their roles as biological masks. Trends Biochem Sci 10: 357–360

    Article  CAS  Google Scholar 

  41. Schauer R, Shukla AK, Schröder C, Müller E (1984) The anti-recognition function of sialic acids: studies with erythrocytes and macrophages. Pure Appl Chem 56: 907–921

    Article  CAS  Google Scholar 

  42. Ashwell G, Morel 1 AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41: 99–128

    PubMed  CAS  Google Scholar 

  43. Keim S, Jibril S, Lee H, Yoshino T, Schauer R (1986) The galactose receptor of rat peritoneal macrophages: binding of sialidase-treated blood cells and glyoproteins. Lectins, Biology, Biochemistry, Clinical Biochemistry (Bog-Hansen TC, van Driessche E, eds) Vol 5, 221–228, Walter de Gruyter Berlin New York

    Google Scholar 

  44. Keim S, Shukla AK, Paulson JC, Schauer R (1986) Reconstitution of the masking effect of sialic acid groups on sialidase-treated erythrocytes by the action of sialytransferases. Carbohydr Res 149: 59–64

    Article  Google Scholar 

  45. Lee RT, Lin P, Lee YC (1984) New synthetic cluster ligands for galactose/ N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 23: 4255–4261

    Article  PubMed  CAS  Google Scholar 

  46. Harford J, Klausner RD, Ashwell G (1984) Inhibition of the endocytic pathway for asialoglycoprotein catabolism. Biol Cell 51: 173–180

    PubMed  CAS  Google Scholar 

  47. Ruhenstroth-Bauer G, Goldberg M, Vogl S (1984) Regulation of hepatocyte proliferation. Naturwissenschaften 71: 404–407

    Article  PubMed  CAS  Google Scholar 

  48. Ücer U, Engel W (1981) The effects of neuraminidase and gangliosides on ovarian LH/hCG receptors during rat development. Differentiation 20:162–167

    Article  PubMed  Google Scholar 

  49. Taylor PV, Hancock KN (1979) Effect of neuraminidase on immunogenicity of early mouse trophoblast. Transplantation 28: 256–257

    Article  PubMed  CAS  Google Scholar 

  50. Jacobsen F (1982) Increase of the in vitro complement-dependent cytoto¬xicity against autologous invasive human bladder tumor cells by neuraminidase treatment. Acta path microbiol immunol scand Sect C 90: 187–192

    CAS  Google Scholar 

  51. Schauer R, Sander-Wewer M, Gutschker-Gdaniec GHM, Roggentin P, Randow EA, Hobrecht R (1985) Sialidase activity in the sera of patients and rabbits with clostridial myonecrosis. Clin Chim Acta 146: 119–127

    Article  PubMed  CAS  Google Scholar 

  52. Esievo KAN, Saror DI, Tulpule SS (1981) High sialic acid content of camel’s erythrocytes. Vet Record 109: 414

    Article  CAS  Google Scholar 

  53. Huang RTC, Dietsch E, Rott R (1985) Further studies on the role of neur¬aminidase and the mechanism of low pH dependence in influenza virus-in¬duced membrane fusion. J Gen Virol 66: 295–301

    Article  PubMed  CAS  Google Scholar 

  54. Rogers GN, Herrler G, Paulson JC, Klenk H-D (1986) Influenza C virus uses 9-0-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J Biol Chem 261: 5947–5951

    PubMed  CAS  Google Scholar 

  55. Herrler G, Reuter G, Rott R, Klenk H-D, Schauer R (1987) 9-0-Acetyl-N- acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol Chem Hoppe-Seyler, submitted for publication

    Google Scholar 

  56. Faillard H, Cabezas JA (1963) Isolierung von N-Acetyl- und N-Glycolyl- neuraminsäure aus Kälber- und Hühnerserum. Hoppe-Seyler’s Z Physiol Chem 333: 266–271

    Article  PubMed  CAS  Google Scholar 

  57. Bouhours D, Bouhours J-F (1983) Developmental changes of hematoside of rat small intestine. J Biol Chem 258: 299–304

    PubMed  CAS  Google Scholar 

  58. Suzuki Y, Suzuki T, Matsunaga M, Matsumoto M (1985) Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai Virus) and Newcastle Disease Virus. J Biochem 97: 1189–1199

    PubMed  CAS  Google Scholar 

  59. Markwell MAK, Portner A, Schwartz A (1985) An alternative route of infection for viruses: Entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc Natl Acad Sci USA 82: 978–982

    Article  PubMed  CAS  Google Scholar 

  60. Superti F, Hauttecoeur B, Morelec M-J, Goldoni P, Bizzini B, Tsiang H (1986) Involvement of gangliosides in rabies virus infection. J gen Virol 67: 47–56

    Article  PubMed  CAS  Google Scholar 

  61. Parkkinen J, Rogers GN, Korhonen T, Dahr W, Finne J (1986) Identification of the 0-linked sialyloligosaccharides of glycophorin A as the erythro- receptors for S-fimbriated Escherichia coli. Infec Immun 54: 37–42

    CAS  Google Scholar 

  62. Murray PA, Levine MJ, Reddy MS, Tabak LA, Bergey EJ (1986) Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infec Immun 53: 359–365

    CAS  Google Scholar 

  63. Loomes LM, Uemura K-i, Childs RA, Paulson JC, Rogers GN, Scudder PR, Michalski J-C, Hounsell EF, Taylor-Robinson D, Feizi T (1984) Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type. Nature 307: 560–563

    Article  PubMed  CAS  Google Scholar 

  64. Csete M, Lev BI, Pereira MEA (1985) An influenza virus model for Trypanosoma cruzi infection: Interactive roles for neuraminidase and lectin. Curr Top Microbiol Immunol 117: 153–165

    Article  PubMed  CAS  Google Scholar 

  65. Pereira MEA, Hoff R (1986) Heterogeneous distribution of neuraminidase activity in strains and clones of Trypanosoma cruzi and its possible association with parasite myotropism. Mol Biochem Parasitol 20: 183–189

    Article  PubMed  CAS  Google Scholar 

  66. Esievo KAN (1983) Trypanosoma vivax, stock V953: Inhibitory effect of type A influenza virus anti-HAV8 serum on in vitro neuraminidase (sialidase) activity. J Parasitol 69: 491–495

    Article  PubMed  CAS  Google Scholar 

  67. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes. Trends Biochem Sci 11: 314–317

    Article  CAS  Google Scholar 

  68. Svennerholm L (1976) Interaction of cholera toxin and ganglioside 6M1. Adv Exp Med Biol 71: 191–204

    PubMed  CAS  Google Scholar 

  69. van Heyningen WE, King CA (1976) The role of gangliosides in the action of cholerae toxin. Adv Exp Med Biol 71: 205–214

    PubMed  Google Scholar 

  70. Liu DY, Yu S-F, Remold HG, David JR (1985) Glycolipid receptor for human migration inhibitory factor: Fucose and sialic acid are important for the human monocyte response to migration inhibitory factor. Cell Immunol 90: 539–546

    Article  PubMed  CAS  Google Scholar 

  71. Rahmann H, Probst W, Mühleisen M (1982) Gangliosides and synaptic transmission. Japan J Exp Med 52: 275–286

    CAS  Google Scholar 

  72. Rosen SD, Singer MS, Yednock TA, Stoolman LM (1985) Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228: 1005–1007

    Article  PubMed  CAS  Google Scholar 

  73. Murayama K, Levery SB, Schirrmacher V, Hakomori S-i (1986) Qualitative differences in position of sialylation and surface expression of glycolipids between murine lymphomas with low metastatic (Eb) and high metastatic (Esb) potentials and isolation of a novel disialoganglioside (GD1a) from Eb cells. Cancer Res 46: 1395–1402

    PubMed  CAS  Google Scholar 

  74. Schröder C, Nöhle U, Shukla AK, Schauer R (1983) Improved methods for the isolation and structural analysis of N-glycolylneuraminic acid in man. Glycoconjugates, Proc 7th Int Symp, 162–163, Rahms Lund

    Google Scholar 

  75. Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA (1984) A monoclonal antibody recognizes an 0-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259: 7453–7459

    PubMed  CAS  Google Scholar 

  76. Jennings HJ, Katzenellenbogen E, Lugowski C, Michon F, Roy R, Kasper DL (1984) Structure, conformation and immunology of sialic acid-containing polysaccharides of human pathogenic bacteria. Pure Appl Chem 56: 893–905

    Article  CAS  Google Scholar 

  77. Kabat EA, Nickerson KG, Liao J, Grossbard L, Osserman EF, Glickman E, Chess L, Robbins JB, Schneerson R, Yang Y (1986) A human monoclonal macroglobulin with specificity for a(2->8)-linked poly-N-acetyl neuraminic acid, the capsular polysaccharide of group B meningococci and Escherichia coli K1, which crossreacts with polynucleotides and with denatured DNA. J Exp Med 164: 642–654

    Article  PubMed  CAS  Google Scholar 

  78. Finne J (1985) Polysialic acid - a glycoprotein carbohydrate involved in neural adhesion and bacterial meningitis. Trends Biochem Sci 10: 129–132

    Article  CAS  Google Scholar 

  79. Orskov F, 0rskov I, Sutton A, Schneerson R, Lin W, Egan W, Hoff GE, Robbings JB (1979) Form variation in E. coli K1: Determined by 0-acetylation of the capsular polysaccharide. J Exp Med 149: 669–685

    CAS  Google Scholar 

  80. Anstee DJ (1981) The blood group MNSs-active sialoglycoproteins. Semin Hematol 18: 13–31

    PubMed  CAS  Google Scholar 

  81. Roelcke D (1984) Kälteagglutinine: Humane monoklonale Antikörper gegen Glykokonjugat-Antigene von Zelloberflächen. Funkt Biol Med 3: 106 - 127

    CAS  Google Scholar 

  82. Fischer K, Poschmann A (1976) Neuraminidase-induced hemolytic anemia - diagnostic and therapeutic guidelines. Dtsch Med Wochenschr 101: 1731–1733

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schauer, R., Reuter, G. (1987). Fundamentals of the Biological Properties of Sialic Acids. In: Rahmann, H. (eds) Gangliosides and Modulation of Neuronal Functions. NATO ASI Series, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71932-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71932-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71934-9

  • Online ISBN: 978-3-642-71932-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics