Advertisement

Spectroscopic Raman Study of Trifluoroperovskites of Ammonium Under High Pressure

  • E. Palacios
  • J. Bartolomé
  • F. Agulló-Rueda
  • J. M. Calleja
  • M. Cardona
  • K. Syassen
  • K. Ströβner
Part of the Springer Proceedings in Physics book series (SPPHY, volume 17)

Abstract

The compounds NH4MF3 (M= Mg, Zn, Co, Mn, Cd) have the cubic perovskite structure at high temperature, distorting to quasi-tetragonal symmetry at lower temperatures (fig. 1). In a previous communication /1/, some discrepancies between the electrostatic model and experimental data were discussed, mainly the high barrier (2000 K) to rotation of NH4 groups in NH4CdF3.

Keywords

Repulsive Force Internal Mode High Barrier Ionic Substitution Unit Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Navarro, E. Palacios, J. Bartolomé, R. Burriel, D. González: This workshop.Google Scholar
  2. 2.
    The electrostatic model is developed in A. Hüller, J.W. Kane: J. Chem. Phys. 61, 3599 (1974).Discussions of the model: H.D. Hochheimer, M.L. Shand, C.T. Walker, A. Hüller. J. Chem. Phys. 71, 5008 (1979), and R.W. Gerling, A. Hüller: J. Chem. Phys. 78, 446 (1983)Google Scholar
  3. 3.
    Plumb, Hornig. J. Chem. Phys. 23, 947 (1955).ADSCrossRefGoogle Scholar
  4. 4.
    J. Bartolomé, F. Palacio, J.M.Talleja, F. Agullö Rueda, M. Cardona, R. Migoni: J. Phys. C 18, 6083 (1985).Google Scholar
  5. 5.
    X ray on powdered samples.Google Scholar
  6. 6.
    J.T.P. Dunsmuir, A.P. Lane: Spectroch. Acta 28A, 45 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    R.B. Helmholdt, G.A. Wiegers, J. Bartolomé. J. Phys C 13, 5081 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    K.C. Patil, E.A. Secco: Canad. J. Chem. 29, 1529 (1971).Google Scholar
  9. 9.
    Y. Yamaguchi, H. Schaefer. J. Chem. Phys. 73, 2310 (1980). Theoretical derivation of free NH4+ frequencies.Google Scholar
  10. 10.
    S.D. Haman. Aust. J. Chem. 31, 11 (1978).CrossRefGoogle Scholar
  11. 11.
    N.E. Schumaker, C.W. Garland J. Chem. Phys. 53, 392 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Heyns. J. Phys. Chem. Solids 41, 769 (1980).Google Scholar
  13. 13.
    Y. Ebisuzaki, J. Chem. Phys. 63, 4947 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    A.M. Heyns, K.R. Hirsch, W.B. Holzapfel. J. Chem. Phys. 73, 105 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • E. Palacios
    • 1
  • J. Bartolomé
    • 1
  • F. Agulló-Rueda
    • 2
  • J. M. Calleja
    • 2
  • M. Cardona
    • 3
  • K. Syassen
    • 3
  • K. Ströβner
    • 3
  1. 1.Instituto de Ciencia de los Materiales de Aragón (I.C.M.A.)Universidad de ZaragozaZaragozaSpain
  2. 2.Departamento de Optica y Estructura de la MateriaUniversidad Autónoma de MadridE-MadridSpain
  3. 3.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations