Self-pulsation and Incoherent Beam Coupling Effects in Self-pumped BaTiO3

  • R. W. Eason
  • A. M. C. Smout
  • M. C. Gower
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 18)


The photorefractive effect, in which photo-induced charge migration produces a change in the local refractive index of a material, has been used extensively in the past few years as a means of producing phase conjugate waves [1]. Of the various photorefractive crystals currently available, perhaps the most interesting is BaTiO3 which, because of its very large electro-optic coefficients, has allowed dramatic demonstrations of, for example, two-beam coupling [2], and phase-conjugate mirrors (PCMs) exhibiting gains of 104% [3]. One of the most important applications of BaTiO3 is as a self-pumped phase-conjugate mirror (SPPCM) [4]. In this configuration, no external components other than the BaTiO3 crystal are required to produce a phase-conjugate (PC) replica of an input beam, and no external pumping of the crystal is needed. The mechanism for this is still a subject of discussion, and current theories describe the effect in terms of either two coupled degenerate four-wave mixing (DFWM) interaction regions [5], stimulated scattering [6], or stimulated 2-wave mixing [7].


Fringe Pattern Input Beam Pulsate Behaviour Corner Cube Reflection Conjugate Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Feinberg: In Optical Phase Conjugation, ed. by R. Fisher, (Academic Press, New York 1983) p. 417Google Scholar
  2. 2.
    J. Feinberg, D. Heiman, A.R. Tanguay, Jr. and R.W. Hellwarth: J. Appl. Phys. 51 1297 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    J. Feinberg: Optics Lett. 5 519 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    J. Feinberg: Optics Lett. 7 486 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    K.R. MacDonald and J. Feinberg: J. Opt. Soc. Am. 73 547 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    T.Y. Chang, R.W. Hellwarth: Optics Lett. 10 408 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Lam: Appl. Phys. Lett. 46 909 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    S. Kwong, M. Cronin-Golomb and A. Yariv: Appl. Phys. Lett. 45 1016 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    P. Gunter, E. Volt, M.Z. Zha and J. Albers: Optics Comm. 55 210 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    A.M, C. Smout, R.W. Eason, M.C. Gower: Optics Comm. 59 77 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Eason, A.M.C. Smout : Submitted to Opt. Letts. (1986)Google Scholar
  12. 12.
    F.C. Jahoda, P.G. Weber and J. Feinberg: Optics Lett. 9 362 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    S.-K. Kwong, A. Yariv: Opt. Lett. 11 377 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    K. Cronin-Golomb, J. Paslaski, A. Yariv: Appl. Phys. Letts. 47 1131 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. W. Eason
    • 1
  • A. M. C. Smout
    • 1
  • M. C. Gower
    • 2
  1. 1.Department of PhysicsUniversity of EssexColchester, ElssexUK
  2. 2.Laser DivisionRutherford Appleton Laboratory, ChiltonDidcotUK

Personalised recommendations