Advertisement

Long-lived and Large-coherence Length Excitations in the DNA Double Helix

  • E. W. Prohofsky

Abstract

We discuss the lifetime and mean free path or coherence length of vibrational modes of the DNA double helix in the light of recent calculations and experimental observations. The helix is essentially a long polyion and we consider the range of forces along the helix that are important in determining the vibrational mode behavior. The factors that are likely responsible for the observed long lifetimes and large coherence lengths are reviewed.

Keywords

Coherence Length Double Helix Acoustic Mode Soft Mode Acoustic Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.V. Devi-Prasad and E.W. Prohofsky, Biopolymers 23, 1795 (1984).CrossRefGoogle Scholar
  2. K.V. Devi -Prasad and E.W. Prohofsky, Biopolymers, (1986), in press.Google Scholar
  3. B.H. Dorfman and L.L. Van Zandt, Biopolymers 22, 2639 (1983).CrossRefGoogle Scholar
  4. B. Dorfman and L.L. Van Zandt, Biopolymers 23, 913 (1984).CrossRefGoogle Scholar
  5. G.S. Edwards, C.C. Davis, J.D. Saffer, and M.L. Swicord, Phys. Rev. Lett. 53, 1284 (1984).ADSCrossRefGoogle Scholar
  6. Y. Gao, K.V. Devi-Prasad, and E.W. Prohofsky, J. Chem. Phys. 80, 6291 (1984).ADSCrossRefGoogle Scholar
  7. M.B. Hakim, S.M. Lindsay, and J. Powell, Biopolymers 23, 1185 (1984).CrossRefGoogle Scholar
  8. M. Kohli, W.N. Mei, E.W. Prohofsky, and L.L. Van Zandt, Biopolymers 20, 853 (1981).CrossRefGoogle Scholar
  9. S.M. Lindsay and J. Powell in Structure and Dynamics: Nucleic Acids and Proteins, E. Clementi and R.H. Sarma, Eds., Adenine, New York 1983, p. 241.Google Scholar
  10. S.M. Lindsay and J. Powell, Biopolymers 22, 2045 (1983).CrossRefGoogle Scholar
  11. S.M. Lindsay and J.W. Powell, Phys. Rev. Lett. 53, 1853 (1984).ADSCrossRefGoogle Scholar
  12. S.M. Lindsay, J.W. Powell, E.W. Prohofsky, and K.V. Devi-Prasad in Structure and Dynamics of Nucleic Acids, Proteins and Membranes, E. Clementi and R. Sarma, Eds., Adenine, New York, 1981.Google Scholar
  13. G. Maret, R. Oldenbourg, G. Winterling, K. Dransfeld, and A. Rupprecht, Colloid Polym. Sci. 257, 1017 (1979).CrossRefGoogle Scholar
  14. W.N. Mei, M. Kohli, E.W. Prohofsky, and L.L. Van Zandt, Biopolymers 20, 833 (1981).CrossRefGoogle Scholar
  15. B.F. Putnam, L.L. Van Zandt, E.W. Prohofsky, and W.N. Mei, Biophys. J. 35, 271 (1981).CrossRefGoogle Scholar
  16. J.M. Syster and E.W. Prohofsky, Biopolymers, 13, 2505 (1974).CrossRefGoogle Scholar
  17. S. Takashima, J. Phys. Chem. 70, 1372 (1966).CrossRefGoogle Scholar
  18. H. Urabe and Y. Tominaga, Biopolymers 21, 2477 (1982).CrossRefGoogle Scholar
  19. H. Urabe, Y. Tominaga, and K. Kubota, J. Chem. Phys. 78, 5937 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • E. W. Prohofsky

There are no affiliations available

Personalised recommendations