Explosive Decomposition of Tetramethyldioxetane in the Solid Phase: Potential for a High Density Short Wavelength Chemical Laser

  • M. A. Tolbert
  • M. N. Spencer
  • D. L. Huestis
  • M. J. Rossi
Part of the Springer Proceedings in Physics book series (SPPHY, volume 15)

Abstract

3,3,4,4-Tetramethyl-1,2-dioxetane (TMD) is an energetic compound whose exothermic decomposition results in a high yield of electronically excited products according to reaction (1)
$${\rm{TMD}}\,\, \to \,\,0.5\,{\,^3}{{\rm{A}}^*}\,\, + \,\,1.5\,\,{{\rm{A}}_0},$$
(1)
where 3A* and A0 are electronically excited acetone in its lowest (metastable) triplet state and in the ground state, respectively.[1,2] The decompostion of TMD to form two moles of ground-state acetone is exothermic by 65 kcal/mol. This corresponds to an internal energy content of 2344 J/g for TMD, a value that is comparable to that of a medium grade dynamite.[3] The fact that the yield metastable triplet acetone is high, 30–50%, coupled with a low gas-phase activation energy for reaction (1), 27 kcal/mol, makes TMD a promising candidate pulsed chemical laser.

Keywords

Acetone Argon Explosive Haas Dynamite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    N. J. Turro and P. Lechtken, J. Am. Chem Soc., 94, 2886 (1972).CrossRefGoogle Scholar
  2. 1. (b)
    N. J. Turro, P. Lechtken, G. Schuster, J. Orell, and H. C. Steinmetzer, J. Am. Chem. Soc., 96, 1627 (1974).CrossRefGoogle Scholar
  3. 1. (c)
    N. J. Turro, P. Lechtken, N. E. Schore, C. Schuster, H. C. Steinmetzer, and A. Yekta, Acc. Chem. Res., 7, 97 (1974).CrossRefGoogle Scholar
  4. 2.
    D. J. Bogan, in Chemical and Biological Generation of Excited States, W. Adam and G. Cilento, Ed. (Academic Press: New York, 1982).Google Scholar
  5. 3.
    M. A. Cook and G. Thompson, in Riegel’s Handbook of Industrial Chemistry, J. A. Kent, Ed. (Van Nostrand Reinhold: New York, 1974).Google Scholar
  6. 4.
    M. J. Rossi and D. L. Huestis, SRI Final Report to U.S. Army Research Office, dated 29 October 1984.Google Scholar
  7. 5.
    P. Lechtken, A. Yekta, and N. J. Turro, J. Am. Chem. Soc., 95, 3027 (1973).CrossRefGoogle Scholar
  8. 6. (a)
    F. Porter and P. West, Proc. Roy. Soc., A279 (1964).Google Scholar
  9. 6. (b)
    B. Bonno, J. L. Laporte, and Y. Rousset, J. Chem. Phys., 81, 157 (1984).Google Scholar
  10. 6. (c)
    J. M. Morris and J. M. Yoshihara, Mol Phys., 36, 993 (1978).CrossRefADSGoogle Scholar
  11. 7.
    K. R. Kopecky, J. E. Filby, C. Mumford, P. A. Lockwood, and J. Y. Ding, Can. J. Chem., 53, 1103 (1975).CrossRefGoogle Scholar
  12. 8.
    J. C. Bottaro, to be published.Google Scholar
  13. 9.
    The heat capacity of TMD was estimated using group additivity: S. W. Benson, Thermochemical Kinetics (John Wiley: New York, 1976).Google Scholar
  14. 10. (a)
    G. Yahav and Y. Haas, Chem. Phys., 35, 41 (1978).CrossRefADSGoogle Scholar
  15. 10. (b)
    Y. Haas, S. Ruhman, G. D. Greenblatt, and O. Anner, J. Am. Chem. Soc., 107, 5068 (1985).CrossRefGoogle Scholar
  16. 16. (c)
    S. Ruhman, O. Anner, and Y. Haas, J. Phys. Chem., 88, 6397 (1984).CrossRefGoogle Scholar
  17. 16. (d)
    Y. Haas and G. Yahav, Chem. Phys. Lett., 48, 63 (1977).CrossRefADSGoogle Scholar
  18. 11.
    D. L. Huestis, unpublished results.Google Scholar
  19. 12.
    N. Semenoff, Chemical Kinetics and Chain Reactions ( Oxford Press: London, 1935 ), pp. 423–443.Google Scholar
  20. 13.
    B. D. Cannon and F. F. Crim, J. Am. Chem. Soc., 103, 6722 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. A. Tolbert
    • 1
  • M. N. Spencer
    • 1
  • D. L. Huestis
    • 1
  • M. J. Rossi
    • 1
  1. 1.Department of Chemical Kinetics, Chemical Physics LaboratorySRI InternationalUSA

Personalised recommendations