Skip to main content

Fluid-Dynamic Effects, Including Turbulence, on a High-Pressure Discharge

  • Conference paper
Gas Flow and Chemical Lasers

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 15))

Abstract

We have been studying the stabilization of discharges by flow phenomena for a number of years, and although more interested in molecular gas discharges as typified by the CO2-laser, broad classifications must be introduced in order to discuss relevant phenomena. The first and perhaps most important classification relates to the existence of negative ions and, while our work has been with electron-attaching gases, we shall also mention non-attaching gases such as nitrogen and the inert gases. Next we distinguish between parallel flow and cross flow as they pertain to the direction of the overall motion of the fluid with respect to the conventional motion of the electrical current. In parallel flow the movement is coaxial and we consider flows going both from anode to cathode (normal mode) and from cathode to anode (reverse flow). Turbulence generating grids are located upstream of the electrodes as shown In Fig. 1, except for the reverse flow where they become ineffective. Because the electrodes are immersed In the flow, the anode is typically made of an array of pins, or a pin-rake, supported in some suitable streamlined fashion. On the other hand, the cathode is a screen or some other device which presents low blockage to the main flow while serving as an electrical “flat-plate”. The gas pressures can be said to be moderate to high although In our own work we operate exclusively near one atmosphere; flow rates are subsonic and intercavity volumes large. Part of our effort has been to vary Interelectrode spacing and to exchange anode pins for anode wires spanning the cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Eckbreth and F.S. Owen: Rev. Sci. Instrum. 43, 995 (1972).

    Article  Google Scholar 

  2. A.V. Bondarenko, B.S. Golubev, E.V. Dan’shchikov, F.V. Lebedev, and A.V. Ryazanov: Sov. J. Plasma Fhys. 5(3). 386 (1979).

    Google Scholar 

  3. R.L. Ream: Laser Focus 18, A3 (1982); also, Laser Focus 22 No 5 pg 24 and 22 No 6 pg 26 (1986).

    Google Scholar 

  4. R.S. Sigmond: “Corona Discharges” in Electrical Breakdown of Gases. Meek and Craags Eds. ( Wiley, New York 1978 )

    Google Scholar 

  5. A.I. Ivanchenko, R.I. Soloukhin, and Yu A. Yakobi: Sov. J. Quant. Electron. 419 (1975).

    Google Scholar 

  6. W.L. Nighan and W.J. Wiegand: Appl. Phys. Lett. 15, 633 (1974).

    Article  ADS  Google Scholar 

  7. O. Biblarz, J.L. Barto, and H.A. Post: Israel J. Tech. 15, 59 (1977).

    ADS  Google Scholar 

  8. J.L. Barto: “Study of Gas Dynamic Effects in Non-Uniform High Pressure Electrical Discharges” Naval Postgrad. Sehl. Report NPS67-80-005 (Aug. 1980).

    Google Scholar 

  9. D.P. McErlean and P.J. Ortwerth: “Aerodynaraically Stabilized Electrical Discharges” Report AFAPL-TR-74-1 (Feb. 1974).

    Google Scholar 

  10. E.P. Velikhov, V.S. Golubev, and S.V. Pashkin: Sov. Phys. Usp. 25 (5). 340 (1982).

    Article  ADS  Google Scholar 

  11. O. Biblarz and R.E. Nelson: J. Appl. Phys. 45, 633 (1974).

    Article  ADS  Google Scholar 

  12. E. Wasserstrom, Y. Crispin, J. Rom, and J. Shwartz: J. Appl. Phys. 49 (1). 81 (1978).

    Article  ADS  Google Scholar 

  13. C.H. Davis: “Aerodynamic Stabilization of an Electrical Discharge for Gas Lasers”, MSAE/EE Thesis Naval Postgrad. Sehl. (Sept. 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biblarz, O., Barto, J.L. (1987). Fluid-Dynamic Effects, Including Turbulence, on a High-Pressure Discharge. In: Rosenwaks, S. (eds) Gas Flow and Chemical Lasers. Springer Proceedings in Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71859-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71859-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71861-8

  • Online ISBN: 978-3-642-71859-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics