Skip to main content

New VUV and XUV Laser Systems

  • Conference paper
  • 162 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 15))

Abstract

It is presently one of the major objectives in quantum electronics to extend the range of directly-pumped lasers to shorter wavelengths. Until recently, the short wavelength limit for lasers was marked by several excimer lasers and the H 2 laser in the deep vacuum ultraviolet above 100 nm. In 1985, new results on strong amplified spontaneous emission for wavelength in the 20 nm range from highly-ionized laser-produced plasmas were reported by several groups [1,2]. Although these experiments clearly demonstrate the possibility of achieving light amplification for transition energies as high as ∼50 eV, gigantic laser systems are required. It is the purpose of this article to point out some of the experimental difficulties associated with the generation of short wavelength laser radiation, briefly indicate how they were overcome in several recent experiments, and finally, to put forward some ideas that could lead to VUV and XUV lasers using comparatively simple, laboratory-type, table top devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mathews, D.L., Hagelstein, P.L., Rosen, M.D., Eckart, M.J., Ceglio, N.M., Hazi, A.U., Medecki, H., MacGowan, B.J., Trebes, J.E., Whitten, B.L., Campbell, E.M., Hatcher, C.W., Hawryluk, A.M., Kaufman, R.L., Pleasance, L.D., Rambach, G., Scoficld, J.H., Stone, G., and Weaver, T.A., Phys. Rev. Lett., 54, 110–113 (1985).

    Article  ADS  Google Scholar 

  2. Suckewer, S., Skinner, C.H., Milchberg, H., Keane, C., and Voorhees, D., Phys. Rev. Lett., 55,1753 (1985).

    Article  ADS  Google Scholar 

  3. Underwood, J.H., Optics News, 15, 20 (1986).

    Article  Google Scholar 

  4. White, J.C. and Henderson, D., Phys. Rev. A, 25, 1226 (1982).

    Article  ADS  Google Scholar 

  5. Ludewigt, K., Schmidt, H., Dierknig, R., and Wellegehausen, B., Opt. Lett., 10, 606 (1985).

    Article  ADS  Google Scholar 

  6. Harris, S.E., Optic Lett., 5, 1–3 (1980).

    Article  ADS  Google Scholar 

  7. Rothenberg, J.E. and Harris, S.E., IEEE J. Quantum Electron., QE-17, 416–422 (1981).

    ADS  Google Scholar 

  8. Papanyan, V.O., Martirosyan, A.E., and Tittel, F.K., IEEE J. Quantum Electron., QE-19, 1835–1840 (Dec. 1983 ).

    Article  ADS  Google Scholar 

  9. Feldman, P. and Novick, R., Phys. Rev., 160, 143–158 (1967).

    Article  ADS  Google Scholar 

  10. Deloche, R., Monchicourt, P., Cheret, M., and Lambert, F., Phys. Rev., 13, 1140–1165 (1976).

    ADS  Google Scholar 

  11. Myers, G. and Cunningham, A.J., J. Chem. Phys., 67, 1942–1947 (1977).

    Article  ADS  Google Scholar 

  12. van Regemorter, H., Astrophysical Journal, 136, 906–915 (1962).

    Article  ADS  Google Scholar 

  13. Elitskii, A.V. and Smirnov, B.M., Sov. Phys. JETP, 57, 955 – 959 (1983).

    Google Scholar 

  14. Lawler, J.E., Parker, J.W., Anderson, L.W., and Fitzsimmons, W.A., Phys. Rev. Lett., 39, 543–546(1977).

    Article  ADS  Google Scholar 

  15. Johnson, C.E., Tipton, C.A., and Robinson, H.G., J. Phys. B, 11, 927–933 (1978).

    Article  ADS  Google Scholar 

  16. Huestis, D.L. and Schlotter, N.E., J. Chem. Phys. B, 69, 3100–3107 (1978).

    Article  ADS  Google Scholar 

  17. Sauerbrey, R. and Langhoff, H., IEEE J. Quantum Electron., QE-21, 179 (1985).

    Article  ADS  Google Scholar 

  18. Potts, AAV. and Williams, T.A., J. of the Chem. Soc., Faraday Trans. II, 72, 1892–1900 (1976).

    Google Scholar 

  19. Steigerwald, F., Langhoff, H., Gricgcl, A., and Hammer, W., Opt. Comm., 57, 248 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sauerbrey, R. (1987). New VUV and XUV Laser Systems. In: Rosenwaks, S. (eds) Gas Flow and Chemical Lasers. Springer Proceedings in Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71859-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71859-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71861-8

  • Online ISBN: 978-3-642-71859-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics