Skip to main content

Genetic Predisposition for Cancer Risks in Man

  • Conference paper
Cancer Risks

Abstract

In considering cancer risks and strategies for their elimination it is vitally important to keep in mind the diverse nature of the disease. Not only are there many different kinds of cancer, each with subtypes, but also it seems likely that for any one cancer there may be a variety of interacting causal factors. Moreover, there is good evidence that the same cancer type may be the end result of a number of quite different causal pathways. Such considerations will have both advantages and disadvantages in trying to understand cancer. On the negative side, the sheer complexity of the causal mechanisms makes both analysis of the aetiology and proposals for preventive action extremely difficult and, of course, the existence of multiple pathways can mean that even a successful strategy may not deal adequately with all the risks. On the other hand our growing power to resolve subclasses of disease often means that we can see a causal pattern clearly for the first time even though the number of cases in that category may be small. Furthermore, the existence of multiple factors in the aetiology of a cancer, while it may make complete elucidation of mechanisms difficult, means that removal of only one of the causal factors may make a major impact in reducing incidence even in the absence of complete understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bagshawe KD, Rawlings G, Pike MC, Lawler SD (1971) ABO blood groups in trophoblastic neo-plasia. Lancet 1:553

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA, Harnden DG (1982) Ataxia–telangiectasia: a cellular and molecular link between cancer, neuropathology and immune deficiency

    Google Scholar 

  • Cavanee WK, Dryja TP, Philips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblas-toma. Nature 305:779–784

    Article  Google Scholar 

  • Cavanee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire JA, Philips RA, Gallie BL (1983) Genetic origin of mutations predisposing to retinoblastoma. Science 228:501–503

    Article  Google Scholar 

  • Dausset J, Colombani J, Hors J (1982) Major histocompatibility complex and cancer with special reference to human familial tumours (Hodgkin’s disease and other malignancies). Cancer Surveys 1:119–149

    Google Scholar 

  • de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagmeijer A, Bootsma D, Spurr NK, Heis-terkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myeloid leukaemia. Nature 300:765–767

    Article  PubMed  Google Scholar 

  • Harnden DG, Herbert A (1982) Association of constitutional chromosome rearrangements with neoplasia. Cancer Surveys 1:149–173

    Google Scholar 

  • Harnden DG, Langlands AO, McLean N (1971) Carcinoma of the breast and Klinefelter’s syndrome. J Med Genet 8:460–61

    Article  PubMed  CAS  Google Scholar 

  • Heighway J, Thatcher N, Cerny T, Hasleton PS (1986) Genetic predispostion to human lung cancer. Br J Cancer 53:453–57

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys A, Brookfield JFY, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818–819

    Article  PubMed  CAS  Google Scholar 

  • Kaiser-McCaw B, Hecht F (1982) Ataxia telangiectasia: chromosomes and cancer. In: Bridges BA, Harnden DG (eds) Ataxia telangiectasia: a cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 243–257

    Google Scholar 

  • Kennaugh A, Butterworth S, Hollis R, Baer P, Rabbits TH, Taylor AMR (1986) The chromosome breakpoint at 14q32 in an ataxia-telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitt’s and inversion T cell lymphoma. Hum Genet (in press)

    Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  • Krontiris TG, DiMartino NA, Colb M, Parkinson DR (1985) Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumour DNAs of cancer patients. Nature 313:369–374

    Article  PubMed  CAS  Google Scholar 

  • Kunkel LM (1986) Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy. Nature 322:73–77

    Article  PubMed  CAS  Google Scholar 

  • Lalande M, Dryja TP, Schreck J, Shipley J, Flint A, Latt SA (1984) Isolation of chromosome 13 specific DNA sequences cloned from flow sorted chromosomes and potentially linked to the retinoblastoma locus. Cancer Genet Cytogenet 13:283–296

    Article  PubMed  CAS  Google Scholar 

  • Lynch HT, Frichot BC, Lynch JF (1977a) Cancer control in xeroderma pigmentosum. Arch Der-matol 113:193–195

    CAS  Google Scholar 

  • Lynch HT, Lynch J, Lynch P (1977b) Management and control of familial cancer. In: Mulvihill JJ, Miller RW, Fraumeni JF (eds) Genetics of human cancer. Raven, New York

    Google Scholar 

  • Lynch HT, Kimberling WJ, Biscone KA, Lynch JF, Wagner CA, Brennan K, Malliard JA, Johnson PS, Soori JS, McKenna PJ (1986) Familial heterogeneity of colon cancer risk. Cancer 57:2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Mann JR, Corkery JJ, Fisher HJW, Cameron AH, Mayerova A, Wolf U, Kennaugh AA, Woolley V (1983) The X-linked recessive form of XY gonadal dysgenesis with a high incidence of gonadal germ cell tumours: clinical and genetic studies. J Med Genet 20:264–270

    Article  PubMed  CAS  Google Scholar 

  • McConnell RB (1966) The genetics of gastrointestinal disorders. Oxford University Press, London

    Google Scholar 

  • McKusick VA (1983) Mendelian inheritance in man, 6th edn. John Hopkins, Baltimore

    Google Scholar 

  • Miller RW (1970) Neoplasia and Down’s syndrome. Ann NY Acad Sci 171:637–644

    Article  Google Scholar 

  • Mulvihill JJ (1981) Cancer control through genetics. In: Arrighi FE, Rao PN, Stubblefield E (eds) Genes, chromosomes and neoplasia. Raven, New York

    Google Scholar 

  • Mulvihill J, Wade WM, Miller RW (1975) Letter: gonadoblastoma in dysgenetic gonads with a Y chromosome. Lancet 1:863

    Article  PubMed  CAS  Google Scholar 

  • Ponder BAJ (1984) Role of genetics and familial factors. In: Stoll BA (ed) Risk factors and multiple cancer. Wiley, Chichester, pp 177–204

    Google Scholar 

  • Ramsay CA, Coltart TM, Blunt S, Pawsey SA (1974) Prenatal diagnosis of xeroderma pigmen-tosum, report of the first successful case. Lancet 2:1109

    Article  PubMed  CAS  Google Scholar 

  • Ray JH, German J (1981) In: The chromosome changes in Bloom’s syndrome, ataxia-telangiectasia, and Fanconi’s anaemia. Raven, New York, pp 351–378

    Google Scholar 

  • Riccardi VM, Hittner HM, Francke U, Yunis JJ, Ledbetter D, Borges W (1980) The aniridia-Wilm’s tumour association; the critical role of chromosome band 11pl3. Cancer Genet Cyto-genet 2:131

    Article  Google Scholar 

  • Sjoqvist F (1985) Interindividual differences in drug responses: an overview. In: Rowland M, Steiner LB, Steiner JL (eds) Variability in drug therapy: description, estimation and control. Raven, New York

    Google Scholar 

  • Spector BD, Filipovich AH, Perry GS, Kersey JH (1982) Epidemiology of cancer in ataxia-telangiectasia. In: Bridges BA, Harnden DG (eds) Ataxia-telangiectasia – a cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 103–138

    Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1983) Transloca-tion of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt’s lymphoma and murine plasmacytoma cells. Proc Nat Acad Sci USA 79:7837–7841

    Article  Google Scholar 

  • Thein SL, Oscier DG, Flint J, Wainscoat JS (1986) Ha-ras hypervariable alleles in myelodysplasia. Nature 321:84–85

    Article  PubMed  CAS  Google Scholar 

  • Thorgeirsson SS, Nebert DW (1977) The AL locus and the metabolism of chemical carcinogens and other foreign compounds. Adv Cancer Res 25:149–194

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse J, Muir C, Correa P, Powell J, Davies W (1976) Cancer incidence in five continents. IARC scientific publication 5. International Agency for Research on Cancer, Lyon

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harnden, D.G. (1987). Genetic Predisposition for Cancer Risks in Man. In: Bannasch, P. (eds) Cancer Risks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71843-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71843-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17465-3

  • Online ISBN: 978-3-642-71843-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics