The Development of Intracerebral Blood Vessels Interacts With Astrocyte Development and Neuron Positioning in the Rat Neocortex

  • J. R. Wolff
Part of the NATO ASI Series book series (volume 5)

Abstract

The nervous system of vertebrates and invertebrates contains neuroglial cells which completely separate neurons from the meninges. This “membrana limitans gliae” (Held, 1909) expands considerably where blood vessels enter the nervous tissue (Table 1). It is, therefore, not surprising that, in vertebrates, the number of non-radial or astrocyte-like glial cells increases with the expansion of intracerebral vascularization, while the number of radial or ependymal glial cells decreases (Sarnat et al., 1973). The correlation, however, is not absolute. Some non-radial glial cells occur in the absence of intracerebral vascularization (e.g., in the avascular spinal cord of Amphioxus; Bone 1960) and radial or ependymal glial cells (“Tanycytes”; Horstmann, 1954) can also form perivascular sheaths (e.g., Muller cells in vascularized retina). The data surveyed here may explain this lack of absolute correlation.

Keywords

Migration Retina Neurol Fibril Monoamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambach, G., J. Toldi, O. Fehér, F. Joó, and J.R. Wolff (1986) Spatial correlation between sensory regions and the drainage fields of pial veins in rat cerebral cortex. Exp. Brain Res. 61: 540–548.PubMedCrossRefGoogle Scholar
  2. Bär, Th. (1980) The Vascular System of the Cerebral Cortex. Adv. Anat. Embryol. Cell Biol. 59: 1–89. Spinger, Berlin, Heidelberg, New York.Google Scholar
  3. Bär, Th., A. Miodonski, and A.W. Budi-Santoso (1986) Postnatal development of the vas-cular pattern in the rat telencephalic pia-arachnoid. SEM study. Anat. Embryol. 174, in press.Google Scholar
  4. Bär, Th., and J. Wolff (1972a) The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z. Zellforsch. 133: 231–248.PubMedCrossRefGoogle Scholar
  5. Bär, Th., and J.R. Wolff (1972b) On the vascularization of the rat’s cerebral cortex. Bibl. Anat. 11: 315–519.Google Scholar
  6. Bär, Th., and J.R. Wolff (1973) Quantitative Beziehungen zwischen der Verzweigungs-dichte und Länge von Capillaren im Neocortex der Ratte während der postnatalen Entwicklung. Z. Anat. Entw.gesch. 141: 207–221.CrossRefGoogle Scholar
  7. Bär, Th., and J.R. Wolff (1976) Development and adult variations of the wall of brain capillaries in the neocortex of rat and cat. In The Cerebral Vessel Wall, Cervos- Navarro, J. et al., eds., pp. 1–6. Raven Press, New York.Google Scholar
  8. Berry, M., and A.W. Rogers (1965) The migration of neuroblasts in the developing cere-bral cortex. J. Anat. (Lond.) 99: 691–709.Google Scholar
  9. Blinkov, S.M., and IL. Glezer (1968) Das Zentralnervensystem in Zahlen und Tabellen. 458p. Veb G. Fischer, Jena.Google Scholar
  10. Bone,Q. (1960) The central nervous system of Amphioxus. J. Comp. Neurol. 115: 27–51.CrossRefGoogle Scholar
  11. Eulner, S. ( 1980; Beziehungen zwischen Wachstum und Vaskularisation der Großhirnrinde. Eine morphometrische Studie an der Albinoratte. Thesis, University of Göttingen, pp. 1–88.Google Scholar
  12. Gallyas, F., J.R. Wolff, H. Böttcher, and L. Zaborszky (1980) A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. Stain Technol. 55: 299–306.PubMedGoogle Scholar
  13. Guseo, A., and F. Gallyas (1974) Intercapillary bridges and the development of brain capillaries. In Pathology of Cerebral Microcirculation. Cervos-Navarro et al., eds., pp. 448. De Gruyter, Berlin.Google Scholar
  14. Held, H. (1909) Über die Neuroglia marginalis der menschlichen Großhirnrinde. Mschr. Psychol. Neurol. 26 (Erg.Heft): 360–416.CrossRefGoogle Scholar
  15. Horstmann, E. (1954) Die Faserglia des Selachiergehirns. Z. Zellforsch. 39: 588–617.PubMedCrossRefGoogle Scholar
  16. Holzgraefe, M., G. Teuchert, and 3.R. Wolff (1981) Chronic isolation of visual cortex induces reorganization of cortico-cortical connections. In Lesion-induced Neuronal Plasticity in Sensorimotor Systems, H. Flohr and W. Precht, eds., pp. 351–359. Springer, Berlin, Heidelberg, New York.Google Scholar
  17. Leonhardt, H. (1980) Ependym und circumventrikuläre Organe. In Handbuch der Mikro-skopischen Anatomie des Menschen, voi. IV/10: Neuroglia I, A. Oksche, ed., pp. 177–665. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  18. Mares, V., and G. Brückner (1978) Postnatal formation of non-neuronal cells in the rat occipital cerebrum: An autoradiographic study of the time and space pattern of cell division. J. Comp. Neurol. 177: 519–528.PubMedCrossRefGoogle Scholar
  19. Rakic, P., L.J. Stensaas, E.P. Sayre, and R.C. Sidman (1974) Computer-aided three- dimensional reconstruction and quantitative analysis of cells from serial electron micrpscopic montages of foetal monkey brain. Nature 250: 31–34.PubMedCrossRefGoogle Scholar
  20. Rickmann, M., and J.R. Wolff (1985) Prenatal gliogenesis in the neopallium of rat. Adv. Anat. Embryol. Cell Biol. 93: 1–104. Springer, Berlin, Heidelberg, New York.Google Scholar
  21. Sarnat, H.B., J.F. Campa, and J.M. Lloyd (1975) Inverse prominence of ependyma and capillaries in the spinal cord of vertebrates: A comparative histochemical study. Amer. J. Anat. 143: 439–450.PubMedCrossRefGoogle Scholar
  22. Strong, L.H. (1964) The early embryonic pattern of internal vascularization of the mammalian cerebral cortex. J. Comp. Neurol. 123: 121–138.PubMedCrossRefGoogle Scholar
  23. Wolff, J. (1963) Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z. Zellforsch. 60: 409–431.PubMedCrossRefGoogle Scholar
  24. Wolff, J. (1965) Elektronenmikroskopische Untersuchungen über die Struktur und Gestalt von Astrocytenfortsätzen. Z. Zellforsch. 66: 811–828.PubMedCrossRefGoogle Scholar
  25. Wolff, J. (1970) Quantitative aspects of astroglia. Proc. 6th Intern. Congr. Neuropath., Mason, Paris, pp. 327–352.Google Scholar
  26. Wolff, J.R. (1976) An ontogenetically defined angioarchitecture of the neocortex. Drug Res. 26/6: 12.Google Scholar
  27. Wolff, J.R. (1977) Ultrastructure of the terminal vascular bed as related to function. In; Microcirculation, G. Kaley and B.M. Altura, eds., vol. I, pp. 95–130. Univ. Park Press, Baltimore.Google Scholar
  28. Wolff, J.R., and Th. Bär (1972) Seamless endothelia in brain capillaries during development of the rat’s cerebral cortex. Brain Res. 41: 17–24.PubMedCrossRefGoogle Scholar
  29. Wolff, J.R., and Th. Bär (1976) Development and adult variations on the pericapillary glial sheath in the cortex of rat. In The Cerebral Vascular Wall, J. Cervôs-Navarro et al., eds., pp. 7–13. Raven Press, New York.Google Scholar
  30. Wolff, J.R., B.M. Chronwall, and M. Rickmann (1978) Morphogenetic relations between cell migration and synaptogenesis in the neocortex of rat. In Proc. Europ. Soc., Neurochem. V. Neuhoff, ed., pp. 158–173. Verlag Chemie, Weinheim, New York.Google Scholar
  31. Wolff, J.R., B.M. Chronwall, and M. Rickmann (1983) “Diffuse deposition mode” provides visual cortex with non-pyramidal and GABA-ergic neurons. Intern. J. Devel. Neurosci. 1: 246.Google Scholar
  32. Wolff, J.R., S. Eins, M. Holzgraefe, and L. Zaborszky (1981) The temporo-spatial course of degeneration after cutting cortico-cortical connections in adult rats. Cell Tissue Res. 214: 303–321.PubMedCrossRefGoogle Scholar
  33. Wolff, J.R., Ch. Goerz, Th. Bär, and F.-H. Giildner (1975) Common morphogenetic as-pects of various organotypic microvascular patterns. Microvasc. Res. 10: 373–395.PubMedCrossRefGoogle Scholar
  34. Wolff, J., and S.T. Nemecek (1968) Über kollagenhaltige perivasculäre Räume an “Kapillaren” in der Medulla des Rhesusaffen. Experientia 24: 930.PubMedCrossRefGoogle Scholar
  35. Wolff, J.R., K.T. Rajan, and W. Noack (1974) The fate and fine structure of fragments of blood vessels in CNS tissue cultures. Cell Tiss. Res. 156: 89–102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. R. Wolff
    • 1
    • 2
  1. 1.Department of AnatomyUniversity of GöttingenFederal Republic of Germany
  2. 2.Institute for Advanced Study BerlinFederal Republic of Germany

Personalised recommendations