The Role of Growth Cone Adhesion in Neuronal Morphogenesis, as Demonstrated by Interactions with Fibronectin and Laminin

  • Paul Letourneau
  • Sherry Rogers
  • James Hammarback
  • Anne Madsen
  • Sally Palm
  • James McCarthy
  • Leo Furcht
  • Donna Bozyczko
  • Alan Horwitz
Part of the NATO ASI Series book series (volume 5)

Abstract

The embryonic formation of nerve fibers (axons and dendrites) by neurons is both complex and regular. For example, the arrangement of nerves at the brachial plexus and beyond in the vertebrate forelimb is predictable within members of a species, yet is distinct from the pattern of other species. Such precise axonal pathways are forged by the activities of extending nerve fiber tips, first named the growth cone by Santiago Ramon y Cajal (1890). As holds for all cell movements, growth cones can be studied in terms of distinct questions: what starts, what maintains, what regulates the directions of and what stops growth cone movements (Trinkaus, 1984)? Each question probes a different facet of growth cone behavior, and answers to each may involve different intrinsic and extrinsic factors. In the case of the growth cone, morphogenetic behavior can be divided into five distinct activities; neurite elongation, turning, branching, retraction and synaptogenesis. Consistent patterns of nerve fiber pathways, such as in the brachial plexus, arise from the readout of developmental programs that determine these five growth cone activities.

Keywords

Migration Albumin Agarose Heparin Carboxyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, S.K., S.S. Yamada, and K.M. Yamada (1986) Characterization of a 140-kD avaian cell surface antigen as a fibronection-binding molecule. J. Cell Biol. 102: 442–448.PubMedCrossRefGoogle Scholar
  2. Baron-van Evercooren A., H.K. Kleinman, S. Ohno. P. Marangos, J.P. Schwartz, and M. Dubois-Dalcq (1982) Nerve growth factor, laminin, and fibronection promote neu- rite growth in human sensory ganglia cultures. J. Neurosci. Res. 8: 179–193.PubMedCrossRefGoogle Scholar
  3. Boucaut, J.C., T. Darribere, T.J. Poole, H. Aoyama, K.M. Yamada, and J.P. Thiery (1984) Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest migration in avian embryos. J. Cell Biol. 99: 1822–1830.PubMedCrossRefGoogle Scholar
  4. Bozyczko, D., and A.F. Horwitz (1986) The participation of a putative cell surface receptor for laminin and fibronection in peripheral neurite extension. J. Neurosci., in press.Google Scholar
  5. Bray, D. (1982) Filopodial contraction and growth corl guidance. In Cell Behavior, R.Google Scholar
  6. Bellair, A. Curtis, and G. Duiir., eds. pp. 299–318. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  7. Bronner-Fraser, M. (1985) Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J. Cell Biol. 101: 610–617.PubMedCrossRefGoogle Scholar
  8. Buck, C.A., K.A. Knudsen, C.H. Damsky, C.L. Decker, R.R. Greggs, K.E. Duggan, D. Bozyczko, and A.F. Horwitz (1985) Integral membrane protein complexes in cell- matrix adhesion. In The Cell in Contact, G.M. Edelman and J.P. Thiery, eds., pp. 345–364. John Wiley and Sons. New York.Google Scholar
  9. Edgar, D., R. Timpl, and H. Thoenen (1984) The heparin binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 3: 1463–1468.PubMedGoogle Scholar
  10. Goodman, C.S., M.J. Bastiani, C.Q. Doe, S. du Lac, S.L. Helfand, J.Y. Kuwada, and J.B. Thomas (1984) Cell recognition during neuronal development. Science 225: 1271–1279.PubMedCrossRefGoogle Scholar
  11. Hammarback, JA., S.L. Palm, L.T. Furcht, and P.C. Letourneau (1985) Guidance of neurite outgrowth by pathways of substratum-absorbed laminin. J. Neurosci. Res. 13: 213–220.PubMedCrossRefGoogle Scholar
  12. Hammarback, J.A., and P.C. Letourneau (1986) Neurite extension across regions of low adhesivity: Implications for the guidepost hypothesis of axonal pathfinding. Dev. Biol., in press.Google Scholar
  13. Hasegawa, T., E. Hasegawa, W.T. Chen, and K.M. Yamada (1985) Characterization of a membrane-associated glycoprotein complex implicated in cell adhesion to fibro- nectin. J. Cell. Biochem. 28: 307–318.PubMedCrossRefGoogle Scholar
  14. Hatten, M.E., M.B. Furie, and D.B. Rifkin (1982) Binding of developing mouse cerebellar cells to fibronectin: A possible mechanism for the formation of the external granule layer. J. Neurosci. 2: 1195–1206.PubMedGoogle Scholar
  15. Horwitz, A., K. Duggan, R. Greggs, C. Decker, and C. Buck (1985) The CSAT antigen has properties of a receptor for laminin and fibronectin. J. Cell Biol. 101: 2134–2144.PubMedCrossRefGoogle Scholar
  16. Hynes, R.O. and K.M. Yamada (1982) Fibronectins: Multifunctional modular glycoproteins. J. Cell Biol. 95: 369–378.PubMedCrossRefGoogle Scholar
  17. Hynes, R.O., R. Patel, and R.H. Miller (1986) Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development. J. Neurosci. 6: 867–876.PubMedGoogle Scholar
  18. Kurkinen, M., K. Alitalo, A. Vaheri, S. Stenman, and L. Saxen (1979) Fibronectin in the development of the embryonic chick eye. Dev. Biol. 69: 589–600.PubMedCrossRefGoogle Scholar
  19. Lance-Jones, C., and L. Landmesser (1981a) Pathway selection by chick lumbrosacral motoneurones during normal development. Proc. R. Soc. Lond. (Biol.) 214: 1–18.CrossRefGoogle Scholar
  20. Lance-Jones, C. and L. Landmesser (1981b) Pathway selection by chick lumbrosacral motoneurones in an experimentally altered environment. Proc. R. Soc. Lond. (Biol.) 214: 19–52.CrossRefGoogle Scholar
  21. Letourneau, P.C. (1982) Nerve fiber growth and its regulation by extrinsic factors. In Neuronal Development, N.C. Spitzer, ed. pp. 213–254. Plenum Press, New York.Google Scholar
  22. Liesi, P., D. Dahl, and A. Vaheri (1983) Laminin is produced by early rat astrocytes in primary culture. J. Cell Biol. 96: 920–924.PubMedCrossRefGoogle Scholar
  23. Liesi, P., D. Dahl, and A. Vaheri (1984) Neurons cultured from developing rat brain attach and spread preferentially on laminin. J. Neurosci. Res. 11: 241–251.PubMedCrossRefGoogle Scholar
  24. Lievo, I., A. Vaheri, R. Timpl, and J. Wartivovaara (1980) Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76: 100–114.CrossRefGoogle Scholar
  25. Mayer, B.W., E.D. Hay, and R.O. Hynes (1981) Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosea. Dev. Biol. 82: 267–286.PubMedCrossRefGoogle Scholar
  26. Pierschbacher M., and E. Rouslahti (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30–33.PubMedCrossRefGoogle Scholar
  27. Ramon y Cajal, S. (1890) Sur l’origine et les ramifications des fibres nerveuses de la moelle embryonaire. Anat. Anz. 5: 609–613; 631–639.Google Scholar
  28. Rickmann, M., J.W. Fawcett, and R.J. Keynes (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J. Embryol. exp. Morph. 90: 409–414.Google Scholar
  29. Rogers, S.L., P.C. Letourneau, S.L. Palm, J. McCarthy, and L.T. Furcht (1983) Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev. Biol. 98: 212–220.PubMedCrossRefGoogle Scholar
  30. Rogers, S.L., J.B. McCarthay, S.L. Palm, L.T. Furcht, and P.C. Letourneau (1985) Neuron-specific interactions with two neurite-promoting fragments of fibronectin. J. Neurosci. 5: 369–378.PubMedGoogle Scholar
  31. Rogers, S.L., K.J. Edson, P.C. Letourneau, and S.C. McLoon (1986) Distribution of laminin in the developing nervous system of the chick. Dev. Biol. 113: 429–435.PubMedCrossRefGoogle Scholar
  32. Schachner, M., G. Schoonmaker, and R.O. Hynes (1978) Cellular and subcellular localization of LETS protein in the nervous system. Brain Res. 158: 149–158.PubMedCrossRefGoogle Scholar
  33. Timpl, R., J. Engel, and G.R. Martin (1983) Laminin - A multifunctional protein of basement membranes. Trends Biochem. Sci. 8: 207–209.CrossRefGoogle Scholar
  34. Tosney, K.W., and L.T. Landmesser (1984) Pattern and specificity of axonal outgrowth following varying degrees of chick limb bud ablation. J. Neurosci. 4: 2518–2527.PubMedGoogle Scholar
  35. Tosney, K.W., and L.T. Landmesser (1985) Development of major pathways for neurite outgrowth in the chick hindlimb. Dev. Biol. 109: 193–214.PubMedCrossRefGoogle Scholar
  36. Trinkaus, J.P. (1984) Cells into Organs. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
  37. Wartiovaara, J., I. Lievo, and A. Vaheri (1980) Matrix glycoproteins in early mouse development and in differentiation of teratocarcinoma cells. In The Cell Surface: Mediator of Developmental Processes, S. Subtelney and N.K. Wessells, eds. pp. 305–324. Academic Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin 1988

Authors and Affiliations

  • Paul Letourneau
    • 1
  • Sherry Rogers
    • 3
  • James Hammarback
    • 4
  • Anne Madsen
    • 1
  • Sally Palm
    • 2
  • James McCarthy
    • 2
  • Leo Furcht
    • 2
  • Donna Bozyczko
    • 5
  • Alan Horwitz
    • 5
  1. 1.Department of Cell Biology and NeuroanatomyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of AnatomyUniversity of New MexicoAlbuquerqueUSA
  4. 4.Worcester Foundation for Experimental BiologyShrewsburyUSA
  5. 5.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations