Skip to main content

Fibroblast Growth Factor: Molecular and Biological Properties

  • Conference paper
Mesenchymal-Epithelial Interactions in Neural Development

Part of the book series: NATO ASI Series ((ASIH,volume 5))

Abstract

Many aspects of gene replication and expression have been solved by modern molecular biology and the study of viruses, bacteria and yeasts. The fundamental problem of cell proliferation and differentiation in eukaryotic cells still remains in most parts unresolved. The recently developed field of growth factors could provide answers at least in part as to the nature of the factors involved in cell proliferation and differentiation in developing organisms. In the following review we outline our present knowledge on one specific growth factor, Fibroblast growth factor (FGF). This factor which exists under two closely related forms (one basic, the other acidic) has been shown to trigger the proliferation and differentiation of a wide variety of mesoderm and neuroectoderm derived cells. Its mode of action could be intimately linked to that of extracellular matrix (ECM), which is known to regulate cell proliferation and gene expression, as well as morphogenetic tissue interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, J.A., A. Mergia, J.L. Whang, A. Tumolo, J. Friedman, K.A. Hyerild, D. Gos- podarowicz, and J.C. Fiddes (1986) Nucleotide sequence of a bovine cDNA clone encoding the angiogenic protein, basic fibroblast growth factor. Science, in press.

    Google Scholar 

  • Algire, G.H., H.W. Chalkley, F.Y. Legallais, and H.D. Park (1945) Vascular reactions of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. 6: 73–85.

    Google Scholar 

  • Armelin, H.A., M.C.S. Armelin, K. Kelly, T. Stewart, P. Leder, B.H. Cochran, and C.D. Stiles (1984) Functional role of c myc in mitogenic response to platelet derived growth factors precedes activation of c myc. Nature 310: 655–660.

    PubMed  CAS  Google Scholar 

  • Ashton, N., B. Ward, and G. Serpell (1954) Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br. J. Ophthalmol. 38: 397–433.

    PubMed  CAS  Google Scholar 

  • Ausprunk, D.H., D.R. Knighton, and J. Folkman (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois: Role of host and preexisting graft blood vessels. Am. J. Pathol. 79: 597–618.

    PubMed  CAS  Google Scholar 

  • Baird, A., F. Esch, D. Gospodarowicz, and R. Guillemin (1985a) Retina derived endothelial cell growth factors: Partial molecular characterization identity with acidic and basic fibroblast growth factor. Biochemistry 24: 7855–7859.

    PubMed  CAS  Google Scholar 

  • Baird, A., F. Esch, N. Ling, and D. Gospodarowicz (1985b) Isolation and partial characterization of an endothelial cell growth factor from the bovine kidney: Homology with basic fibroblast growth factor. Regulatory Peptides 12: 201–213.

    PubMed  CAS  Google Scholar 

  • Baird, A., P. Mormede, and P. Bohlen (1985c) Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggest its identity with macrophage derived growth factor. Biochem. Biophys. Res. Comm. 126: 358–364.

    PubMed  CAS  Google Scholar 

  • Barritault, D., C. Arruti, and Y. Courtois (1981) Is there a ubiquitous growth factor in the eye? Differentiation (Berlin) 18: 29–42.

    CAS  Google Scholar 

  • Bassett, D.L. (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73: 251–262.

    Google Scholar 

  • Beguinot, L., J.A. Hanover, S. Ito, N. Richert, M.C. Willingham, and I. Pastan (1985) Phorbolesters induced transient internalization without degradation of unoccupied epidermal growth factor receptors. Proc. Natl. Acad. Sci. (USA) 82: 2774–2778.

    CAS  Google Scholar 

  • Bernfield, M., S.D. Banerjee, J.E. Koda, and A.C. Rapraeger (1984) Remodelling of the basement membrane as a mechanism of morphogenetic interaction. In The Role of Extracellular Matrix in Development, R.L. Trelstad, ed., pp. 515–572. Allan R. Liss, Inc., New York.

    Google Scholar 

  • Bohlen, P., A. Baird, F. Esch, N. Ling, and D. Gospodarowicz (1984) Partial molecular characterization of pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. (USA) 81: 3364–5368.

    Google Scholar 

  • Bohlen, P., F. Esch, A. Baird, and D. Gospodarowicz (1985) Amino terminal sequence and comparison to basic fibroblast growth factor. EMBO (Europ. Molec. Biol. Org.) Journal 4: 1951–1956.

    CAS  Google Scholar 

  • Broad, T.E., and R.G. Ham (1983) Growth and adipose differentiation of sheep preadipo- cytes fibroblasts in serum free medium. Eur. J. Biochem. 135: 33–39.

    PubMed  CAS  Google Scholar 

  • Buntrock, P., K.D. Jentzsch, and G. Heder (1982a) Stimulation of wound healing using brain extract with FGF activity. Quantitative and biochemical studies into formation of granulation tissue. Exp. Pathol. 21: 46–53.

    PubMed  CAS  Google Scholar 

  • Buntrock, P., K.D. Jentzsch, and G. Heder (1982b) Stimulation of wound healing using brain extract with FGF activity. II. Histological and morphometric examination of cells and capillaries. Exp. Pathol. 21: 62–67.

    PubMed  CAS  Google Scholar 

  • Buntrock, P., M. Buntrock, I. Marx, D. Kranz, K.D. Jentzsch, and G. Heder (1984) Stimu¬lation to wound healing using brain extract with Fibroblast growth factor (FGF) activity. Exp. Pathol. 26: 247–254.

    PubMed  CAS  Google Scholar 

  • Car lone, R.L., and J.E. Foret (1979) Stimulation of mitosis in cultured limb blastemata of the newt Notophthalmus viridescens. J. Exp. Zool. 21: 245–252.

    Google Scholar 

  • Carlone, R.L., M Ganagarajah, M.P. Rathbone (1981) Bovine pituitary fibroblast growth factor has neurotrophic activity for newt limb regenerates and skeletal muscle in vitro. Exp. Cell Res. 132: 15–21.

    PubMed  CAS  Google Scholar 

  • Castellot, J.J., M.L. Addinizio, R.D. Rosenberg, and M.J. Karnovsky (1981) Cultured endothelial cells produce a heparin like inhibitor of smooth muscle cell growth. J. Cell Biol. 90: 372–279.

    PubMed  CAS  Google Scholar 

  • Castellot, J., D. Cochran, and M. Karnovsky (1985) Effect of heparin on vascular smooth muscle cells. J. Cell. Physiol. 124: 21–28.

    PubMed  CAS  Google Scholar 

  • Cochet, C., G.N. Gill, J. Meisenhelder, J.A. Cooper, and T. Hunter (1984) C-Kinase phos- phorylates the epidermal growth factor receptor and reduces its EGF-stimulated tyrosine protein kinase activity. J. Biol. Chem. 259: 2553–2558.

    PubMed  CAS  Google Scholar 

  • Connelly, T.G., J.R. Ortiz, and T. Yamada (1972) Influence of the pituitary on Wolffian lens regeneration. Dev. Biol. 31: 310.

    Google Scholar 

  • Courty, J., C. Loret, M. Mooenner, B. Chevallier, O. Lagente, Y. Courtois, and D. Barri- tault (1985) Bovine retina contains 3 growth factor affinities with different affinities for heparin: Eye derived growth factor I, II, III.Biochimie 67: 265–269.

    PubMed  CAS  Google Scholar 

  • D’Amore, P.A., B.M. Glaser, S.K. Brunson, and A.H. Fenselau (1981) Angiogenic activity from bovine retina: Partial purification and characterization. Proc. Natl. Acad. Sci. (USA) 78: 3068–3072.

    Google Scholar 

  • Davidson, J., M. Klagsbrun, K. Hill, A. Buckley, R. Sullivan, P.Brewer, and S. Woodward (1985) Accelerated wound repair, cell proliferation and collagen accumulation are produced by cartilage derived growth factor. J. Cell Biol. 100: 1219–1227.

    PubMed  CAS  Google Scholar 

  • Derynck, R., A.B. Roberts, M.E. Winkler, E.Y. Chen, and D.G. Goeddel (1984) Human transforming growth factor and precursor structure and expression in E Coli. Cell 38: 287–294.

    CAS  Google Scholar 

  • Dresden, M.H. (1969) Denervation effects on newt limb regeneration: DNA, RNA and protein synthesis. Dev. Biol. 19: 311–320.

    PubMed  CAS  Google Scholar 

  • Downward, J., Y. Yarden, E. Mayes, G. Scarce, N. Totly, P. Stockwell, A. Ullrich, J. Schlessinger, and M.D. Waterfield (1984) Close similarity of epidermal growth factor receptor and v-er-B oncogenes protein sequences. Nature 307: 521–527.

    PubMed  CAS  Google Scholar 

  • Ekblom, B., E. Lehtonen, L. Saxen, and R. Timpl (1981) Shift in collagen types as an early response to induction of the metanephric mesenchyme. J. Cell Biol. 89: 276–283.

    PubMed  CAS  Google Scholar 

  • Ekblom, P. (1984) Basement membrane proteins and growth factors in kidney differen¬tiation. In The Role of Extracellular Matrix in Development, R.L. Trelsxad, ed., pp. 173–206. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Esch, F., A. Baird, N. Ling, N. Ueno, F. Hill, L. Deneroy, R. Klepper, D. Gospodarowicz, P. Bohlen, and R. Guillemin (1985a) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sei. (USA) 85: 6507–6511.

    Google Scholar 

  • Esch, F., N. Ueno, A. Baird, F. Hill, L. Denoroy, N. Ling, D. Gospodarowicz, and R. Guillemin (1985b) Primary structure of bovine brain acidic fibroblast growth factor (FGF) Biochem. Biophys. Res. Comm. 133: 554–562.

    CAS  Google Scholar 

  • Fett, J.W., D.Y. Styrdom, R.R. Lobb, E.M. Alderman, J. Lemuel-Bethune, J.F. Riordan, and B.L. Vallee (1985) Isolation and characterization of angiogenin, an angiogenic protein, from human carcinoma cells. Biochemistry 24: 5480–5486.

    PubMed  CAS  Google Scholar 

  • Fritze, M.S., C.F. Reilly, and R.D. Rosenberg (1985) An antiproliferative heparan sulfate species produced by post confluent smooth muscle cells. J. Cell. Biol. 100: 1041– 1049.

    Google Scholar 

  • Folkman, J., and R.S. Cotran (1976) Relation of vascular proliferation to tumor growth. Int. Rev. Expt. Pathol. 16: 207–248.

    CAS  Google Scholar 

  • Gajdusek, C.M., P. Di Corleto, R. Ross, and S.M. Schwartz (1980) An endothelial cell derived growth factor. J. Cell Biol. 85: 467–472.

    PubMed  CAS  Google Scholar 

  • Glaser, B.M., H. D’Amore, S. Seppa, H. Seppa, and E. Schiffman (1980) Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288: 438–484.

    Google Scholar 

  • Gimbrone, M.A., Jr., R.S. Cotran, S.B. Leapman, and J. Folkman (1974) Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52: 413–427.

    PubMed  Google Scholar 

  • Gimenez-Gallego, G., J. Rodkey, C. Bennett, M. Rios Candelore, J. Disalvo, and K. Thomas (1985) Brain-derived acidic fibroblast growth factor: Complete amino acid sequence and homologies. Science 230: 1385–1388.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D. (1974) Localization of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249: 123–127.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D. (1979) Fibroblast and epidermal growth factors: Their uses in vivo and in vitro in studies on cell functions and cell transplantation. Mol. Cell Biochem. 25: 79–110.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D. (1984) Preparation of extracellular matrices produced by cultured bovine corneal endothelial cells and PF HR-9 teratocarcinoma cells: Their use in the study of cell proliferation and differentation. In Methods in Molecular and Cell Biology, vol. 1, D. Barnes, D. Sirbasdu, and G. Sato, eds., pp. 275–294. A.R. Liss, New York.

    Google Scholar 

  • Gospodarowicz, D. (1985a) Fibroblast growth factor. In Hormonal proteins and Peptides,, vol. 12, Li Ch, ed., pp. 205–230. Academic Press, New York.

    Google Scholar 

  • Gospodarowicz, D. (1985b) Biological activity in vivo and in vitro of pituitary and brain fibroblast growth factor. In Mediators in Cell Growth and Differentiation, R.3. Ford and A.L. Maizel, eds., pp. 109–134. Raven Press, New York.

    Google Scholar 

  • Gospodarowicz, D., and H. Bailecki (1978) The effects of the epidermal and fibroblast growth factor on the replicative lifespan of bovine granulosa cells in culture. Endocrinology 103: 854–858.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and 3. Cheng (1986) Heparin protects basic and acidic FGF from inactivation. J. Cell Physiol., in press.

    Google Scholar 

  • Gospodarowicz, D., and L. Giguere (1982) Growth factors, effects on corneal tissue. In Cell Biology of the Eye, D.S. McDevitt, ed., pp. 97–135. Academic Press, New York.

    Google Scholar 

  • Gospodarowicz, D., and G. Greenburg (1981) Growth control of mammalian cells. Growth factors and extracellular matrix. In The Biology of Normal Human Growth, M. Ritzen, A. Aperia, K. Hall, A. Larsson, A. Zetterberg, and R. Zetterstrom, eds., pp. 1–21. Raven Press, New York.

    Google Scholar 

  • Gospodarowicz, D., and G.-M. Lui (1981) Effect of substrata and fibroblast growth factor on the proliferation in vitro of bovine aortic endothelial cells. J. Cell. Physiol. 109: 385–392.

    Google Scholar 

  • Gospodarowicz, D., and A.L. Mescher (1977) A comparison of the response of cultured myoblasts and chondrocytes to fibroblast and epidermal growth factors. J. Cell Physiol. 93: 117–128.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and A.L. Mescher (1981) Fibroblast growth factor and vertebrate regeneration. In Advances in Neurology: Neurofibromatosis, V.M. Riccardi and J.J. Mulvihill, eds., vol. 29, pp. 149–171. Raven Press, New York.

    Google Scholar 

  • Gospodarowicz, D., and J.S. Moran (1974) Effect of fibroblast growth factor, insulin, Dexamethasone and serum on the morphology of BALB/c 3T3 cells. Proc. Natl. Acad. Sei. (USA) 71: 46–48.

    Google Scholar 

  • Gospodarowicz, D., and J.S. Moran (1975) Mitogenic effect of fibroblast growth factor on early passage cultures of human and murine fibroblasts. J. Cell. Biol. 66: 451–556.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and J.-P. Tauber (1980) Growth factors and extracellular matrix. Endocr. Rev. 1: 201–227.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and T.K. Thakral (1978) Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl. Acad. Sei. (USA) 75, 847.

    CAS  Google Scholar 

  • Gospodarowicz, D., and Zetter, B. (1977) In Joint WHO/I ABS Symposium on the Stan-dardization of Cell Substrates for the Production of Virus Vaccine, pp. 109–130. S. Karger, Basel, New York.

    Google Scholar 

  • Gospodarowicz, D., H. Bialecki, T.K. Thakral (1979a) The angiogenic activity of the fibroblast and epidermal growth factor. Exp. Eye Res. 28: 501–504.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., K.S. Brown, and C.R. Birdwell, (1978a) Control of proliferation of human vascular endothelial cells of human origin. I. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J. Cell. Biol. 77: 774–788.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., J. Cheng, and M. Lirette (1983a) Bovine brain and pituitary fibroblast growth factor: Comparison of their abilities to support the proliferation of human and bovine vascular endothelial cells. J. Cell Biol. 97: 1677–1685.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., D.C. Cohen, and D.K. Fujii (1982a) Regulation of cell growth by the basal lamina and plasma factors: Relevance to embryonic control of cell proliferation and differentiation. In Cold Spring Harbor Conference on Cell Proliferation, vol. Gospodarowicz, D., D.C. Cohen, and D.K. Fujii, eds., pp. 95–124. Cold Spring Harbor.

    Google Scholar 

  • Gospodarowicz, D., D. Delgado, and I. Vlodavsky (1980a) Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc. Natl. Acad. Sei. (USA) 77: 4094–4098.

    CAS  Google Scholar 

  • Gospodarowicz, D., D.K. Fujii, I. Vlodavsky (1982b) Basal lamina and the control of proliferation of malignant and normal cells. In Expression of Differentiated Functions in Cancer Cells, R.P. Revoltella, G.M. Ponteri, C. Basilico, G. Rovera, R.C. Gallo, and J.H. Subak-Sharpe, eds., pp. 121–139. Raven Press, New York.

    Google Scholar 

  • Gospodarowicz, D., R. Gonzalez, and D.K. Fujii (1983b) Are factors originating from serum plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells? J. Cell Physiol. 114: 191–202.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., G. Greenburg, H. Bialecki (1978b) Factors involved in the modulation of cell proliferation in vivo and in vitro: The role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro 14: 85–118.

    Google Scholar 

  • Gospodarowicz, D., G.-M. Lui, and J. Cheng (1982c) Purification in high yield of brain fibroblast growth factor by preparitive isoelectric focusing at pH 9.6. J. Biol. Chem. 257: 12266–12278.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., S. Massoglia, and J. Cheng (1986a) Effect of retina derived acidic and basic fibroblast growth factor and lipoproteins on the proliferation of bovine retina derived capillary endothelial cells. Expt. Eye Res., in press.

    Google Scholar 

  • Gospodarowicz, D., A.L. Mescher, and C.R. Birdwell (1978c) Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. National Cancer Inst. Monogr. 48: 109–130.

    Google Scholar 

  • Gospodarowicz, D., A.L. Mescher, and J.S. Moran (1978d) Cellular specificities of fibroblast growth factor and epidermal growth factor. Symp. Soc. Dev. Biol. 35: 33–61.

    PubMed  Google Scholar 

  • Gospodarowicz, D., I. Vlodavsky, and N. Savion (1980b) The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct. 13: 339–372.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., I. Vlodavsky, and N. Savion (1981) The role of fibroblast growth factor and the extracellular matrix in the control of proliferation and differentiation of corneal endothelial cells. Vision Res. 21: 87–103.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., C.R. Ill, P.J. Hornsby, and G.N. Gill (1977a) Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor.Endocrinology 100: 1080–1089.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., J. Lepine, S. Massoglia, and I. Wood (1984b) Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived endodermal PF-HR-9 cells to support the proliferation and differentiation of normal diploid bovine kidney tubule epithelial cells in vitro. J. Cell. Biol. 99: 947–961.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., S. Massoglia, J. Cheng, and D.K. Fujii (1986b) Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal and brain cortex, bovine corpus luteum, and brain capillaries. J. Cell Physiol., in press.

    Google Scholar 

  • Gospodarowicz, D., A.L. Mescher, K. Brown, and C.R. Birdwell (1977b) The role of fibroblastic growth factor and epidermal growth factor in the proliferative reponse of the corneal and lens epithelium. Exp. Eye Res. 25: 631–649.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., J.S. Moran, D. Braun, and C.R. Birdwell (1976a) Clonal growth of bovine endothelial cells in tissue culture: Fibroblast growth factor as a survival agent. Proc. Natl. Acad. Sci. (USA) 73: 4120–4124.

    CAS  Google Scholar 

  • Gospodarowicz, D., P. Rudland, J. Lindstrom, and K. Benirschke (1975) Fibroblast growth factor: Localization, purification, mode of action, and physiological significance. In Advances in Metabolic Disorders, H. Luft, ed., vol 8, pp. 301, 335. Stockholm.

    Google Scholar 

  • Gospodarowicz, D., I. Vlodavsky, P. Fielding, and C.R. Birdwell (1978e) The effect of epidermal and fibroblast growth factor upon cell proliferation using vascular and corneal endothelial cells as a model. In Birth Defects, J.W. Littlefield and J. de Grouchy, eds., pp. 233–271. Excerpta Medica, Amsterdam, The Netherlands.

    Google Scholar 

  • Gospodarowicz, D., J. Weseman, J. Moran, and J. Lindstrom (1976b) Effect of fibroblast growth factor on the division and fusion of bovine myoblasts. J. Cell Biol. 70: 395–407.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., J. Cheng, G.-M. Lui, A. Baird, and P. Bohlen (1984a) Isolation by heparin separose affinity chromatography of brain fibroblast growth factor: Identity with pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. (USA) 81: 6963–6967.

    CAS  Google Scholar 

  • Gospodarowicz, D., S. Massoglia, J. Cheng, G.-M. Lui, and P. Bohlen (1985c) Isolation of bovine pituitary fibroblast growth factor purified by fast protein liquid chromatography (FPLC). Partial chemical and biological characterization. J. Cell Physiol. 122: 323–393.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., J. Cheng, G.-M. Lui, A. Baird, F. Esch, and P.Bohlen (1985a) Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117: 2283–2291.

    Google Scholar 

  • Gospodarowicz, D., J. Cheng, G.-M. Lui, D.K. Fujii, A. Baird, and P. Bohlen (1985b) Fibroblast growth factor in the human placenta. Biochem. Biophys. Res. Comm. 30: 554–562.

    Google Scholar 

  • Gospodarowicz, D., I. Vlodavsky, G. Greenberg, J. Alvarado, L.K. Johnson, and J. Moran (1979b) Cellular Shapes is determined by the extracellular matrix and is responsible for the control of cellular growth and function. In Cold Spring Harbor Conferences on Cell Proliferation, vol. Gospodarowicz, D., I. Vlodavsky, G. Greenberg, J. Alvarado, L.K. Johnson, and J. Moran, eds., pp. 561–592. Cold Spring Harbor.

    Google Scholar 

  • Gospodarowicz, D., I. Vlodavsky, G. Greenburg, J. Alvarado, L.K. Johnson, and J. Moran (1979c) Studies in atherogenesis and corneal transplantation using cultured vascular and corneal endothelia. Recent Prog. Horm. Res. 35: 375–448.

    PubMed  CAS  Google Scholar 

  • Gottesman, M.M. (1978) Transformation dependent secretion of low molecular weight protein by murine fibroblasts. Proc. Natl. Acad. bci. (USA) 75: 2767–2771.

    CAS  Google Scholar 

  • Greenburg, G., and D. Gospodarowicz (1982) Inactivation of a basement membrane component responsible for cell proliferation but not cell attachment. Exp. Cell Res. 140: 1 - 14.

    PubMed  CAS  Google Scholar 

  • Greenburg, G., I. Vlodavsky, J.M. Foidart, and D. Gospodarowicz (1980) Conditioned medium from endothelial cell cultures can restore the normal phenotypic expression of vascular endothelium maintained in vitro in the absence of fibroblast growth factor. J. Cell. Physiol. 103: 333–347.

    Google Scholar 

  • Grobstein, C. (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp. Cell Res. 10: 424–440.

    PubMed  CAS  Google Scholar 

  • Guttman, E. (1976) Neurotrophic relations. Annu. Rev. Physiol. 38: 177–216.

    Google Scholar 

  • Hamilton, R.T., M. Nilsen-Hamilton, and G.A. Adams (1985) Superinduction by cyclo- heximide of mitogen induced secreted proteins produced by Balb/c 3T3 cells. J. Cell Physiol. 123: 201–208.

    PubMed  CAS  Google Scholar 

  • Hanover, J.A., and R.B. Dickson (1985) The possible link between receptor and phosphorylation and internalization. Trends Pharmaco. Sci. ( Dec. ): 457–459.

    Google Scholar 

  • Hay, E.D. (1974) Cellular basis of regeneration. In Concepts of Development, J. Lash and J.R. Whittaker, eds. pp. 404–428. Sinauer, Stanford, Conn.

    Google Scholar 

  • Hay, E.D. (1980) Development of the vertebrate cornea. Int. Rev. Cytol. 63: 263–322.

    PubMed  CAS  Google Scholar 

  • Hay, E.D. (1981) Extracellular matrix. J. Cell Biol. 91: 201–223.

    Google Scholar 

  • Hay, E.D. (1984) Cell matrix interaction in the embryo: Cell shape, cell surface, cell skeleton, and their role in differentiation. In The Role of Extra Cellular Matrix in Development, R.L. Trelstad, ed., pp. 1–3. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Jentzsch, K.D., G. Wellmitz, G. Heder, P. Petzold, P. Buntrock, and P.A. Oehme (1980) Bovine brain fraction with fibroblast growth factor actively inducing articular cartilage. Acta biol. med. germ. 39: 97–981.

    Google Scholar 

  • Kato, Y., and D. Gospodarowicz (1984) Growth requirements of low density rabbit costal chondrocyte cultures maintained in serum-free medium. J. Cell Physiol. 120: 354–363.

    PubMed  CAS  Google Scholar 

  • Kato, Y., and D. Gospodarowicz (1985) Sulfated proteoglycan synthesis by rabbit costal chondrocytes grown in the presence and absence of fibroblast growth factor. J. Cell Biol. 100: 477–485.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., T. Tsuda, A. Kikuchi, T. Tanimoto, T. Yamashita, and Y. Takai (1986) Possible involvement of protein kinase C and calcium ion in growth factor induced expression of c myc oncogene in Swiss 3T3 cells. J. Biol. Chem. 261: 1187–1192.

    PubMed  CAS  Google Scholar 

  • Kiss, F.A., and I. Krompecher (1962) Promotion of vascularisation with adrenal extracts explanted to chorioallantoic membrane. Acta Biol. Acad. Sci. Hung. (Suppl) 4: 39–57.

    Google Scholar 

  • Kiss, F.A., and S. Szabo (1969) Total adrenal extract enhancing vascularization and ossification. Acta Morphol. Acad. Sci. Hung. 17: 351–355.

    Google Scholar 

  • Klagsbrun, et al. (1986). Proc. Natl. Acad. Sci., in press.

    Google Scholar 

  • Kozak, M. (1984). Nucleic Acids Res. 12: 857.

    PubMed  CAS  Google Scholar 

  • Kraemer, P.M. (1971) Heparan sulfates of cultured cells II acid soluble and precipitable species of different cell lines. Biochemistry 10: 1445–1451.

    PubMed  CAS  Google Scholar 

  • Kratochwil K. (1972) Tissue interactions during embryonic development. In General Properties in Tissue Interaction in Carcinogenesis, D. Train, ed, pp. 1–48. Academic Press, New York.

    Google Scholar 

  • Lemmon, S.K., M.C. Riely, K.A. Thomas, G.A. Hoover, T. Maciag, and R. Bradshaw (1982) Bovine fibroblast growth factor: Comparison of brain and pituitary preparations. J. Cell Biol. 95: 162–169.

    PubMed  CAS  Google Scholar 

  • Lobb, R.R., and J.W. Fett (1984) Purification of 2 distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23: 6925–6929.

    Google Scholar 

  • Lobb, R.R., E.M. Alderman, and J.W. Fett (1985) Induction of angiogenesis by bovine brain derived class I heparin binding growth factor. Biochemistry 24: 4969–4973.

    PubMed  CAS  Google Scholar 

  • Lobb, R., J. Sasse, Y. Shing, P. D’Amore, J. Fett, R. Sullivan, J. Jacobs, and M. Klags- brun (1986) Purification and characterization of heparin binding endothelial cell growth factors. J. Biol. Chem. 261: 1924–1928.

    PubMed  CAS  Google Scholar 

  • Maciag, T. (1984) Angiogenesis. Progress in Hemostasis and Thrombosis 7: 167–182.

    CAS  Google Scholar 

  • Maciag, T., R. Friesel, L. Mehlman, and A.B. Schreiber (1984) Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225: 932–934.

    PubMed  CAS  Google Scholar 

  • Maciag, T., J. Cerundolo, S. Isley, P.R. Kelley, and R. Forand (1979) An endothelial cell growth factor from bovine hypothalamus: Identification and partial characterization. Proc. Natl. Acad. Sci (USA) 76: 5674–5678.

    CAS  Google Scholar 

  • Maciag, T., G.A. Hoover, J.Van der Spek, M.B. Stermerman, and R. Weinstein (1982) Growth and differentiation of human umbilical vein endothelial cells in culture. In Cold Spring Harbor Conference on Cell Proliferation, vol. 9, pp. 525–538.

    Google Scholar 

  • Matzner, Y., M. Bar Ner, J. Yahalom, R. Ishai-Michaels, Z. Fuks, and I. Vlodavsky (1985) Degradation of heparan sulfate in the sub-endothelial matrix by readily released heparanese from human neutrophils. J. Clin. Inv. 76: 1306–1313.

    CAS  Google Scholar 

  • Mescher, A.L., and D. Gospodarowicz (1979) Mitogenic effect of a growth factor derived from myelin on denervated regenerates of newt forelimbs. J. Exp. Zool. 207: 497–503.

    CAS  Google Scholar 

  • Mescher, A.L., and J.J. Loh (1980) Newt forelimb regeneration blastemas in explanation and effects of various growth-promoting substances. J. Exp. Zool. 216: 235–245.

    Google Scholar 

  • Michaelson, J.C. (1948) The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans. Opthalmol. Soc. U.K. 68: 137–180.

    Google Scholar 

  • Muller, R., R. Bravo, J. Burkshardt, and T. Curran (1984) Induction of c fos gene and protein by growth factors precedes activation of c myc. Nature 312: 716–720.

    PubMed  CAS  Google Scholar 

  • Muller, R., and E.F. Wagner (1984) Differentiation of F9 teratocarcinoma stem cells after transfer of c-fos proto-oncogenes. Nature311: 438–442.

    PubMed  CAS  Google Scholar 

  • Neufeld, G., and D. Gospodarowicz (1985) The identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells. J. Biol 260: 13860–13868.

    PubMed  CAS  Google Scholar 

  • Neufeld, G., and D. Gospodarowicz (1986) Basic and acidic fibroblast growth factor interact with the same cell surface receptor. J. Biol. Chem., in press.

    Google Scholar 

  • Nilsen-Hamilton, M., R.T. Hamilton, W.R. Allen, and S.L. Massoglia (1981) Stimulation of the release of two glycoproteins from mouse 3T3 cells by growth factors and by agents that increase intralysosomal pH. Biochem. Biophys. Res. Commun. 101: 411–417.

    CAS  Google Scholar 

  • Nilsen-Hamilton, M., J.M. Shapiro, S.L. Massoglia, and R.T. Hamilton (1980) Selective stimulation by mitogens of incorporation of 35S-methionine into a family of proteins released into the medium by 3T3 cells. Cell 20: 19–28.

    PubMed  CAS  Google Scholar 

  • Nishi, N., Y. Matuo, Y. Mugurama, Y. Yoshitake, K. Nishikawa, and F. Wada (1985) A human prostatic growth factor (hPGF): Partial purification and characterization. Biochem. Biophys. Res. Com. 132: 1103–1109.

    PubMed  CAS  Google Scholar 

  • Powell, J.A. (1969) Analysis of histogenesis and regenerative ability of denervated fore- limb regenerates of Triturus viridescens. J. Exp. Zool. 170: 125–148.

    PubMed  CAS  Google Scholar 

  • Preminger. G.M., W.E. Koch, F.A. Fried, and J. Mandell (1980) Utilization of the chick chorioallantoic membrane for in vitro growth of the embryonic murine kidney. Amer. J. Anat. 159: 17–24.

    PubMed  CAS  Google Scholar 

  • Proudfoot, N.J., and G.G. Brownlee (1976) V non-coding region sequences in eukaryotic messenger RNA. Nature 263: 211–213.

    PubMed  CAS  Google Scholar 

  • Ratner, N., R.P. Bunge, and L. Glaser (1983) A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101: 744–754.

    Google Scholar 

  • Reyer, R.W. (1977) The amphibian eye: Development and regeneration. In Handbook of Sensory Physiology VI1/5, ed. F. Crescitelli, pp. 309–390. Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Rudland, P.S., W. Seifert, and D. Gospodarowicz (1974) Growth control in cultured mouse fibroblasts: Induction of the pleiotypic and mitogenic responses by a purified growth factor. Proc. Natl. Acad. Sci. (USA) 71: 2600–2604.

    CAS  Google Scholar 

  • Rizzino, A., E. Ruff, and H. Rizzino (1985a) PDGF and FGF induce and/or potentiate the soft agar growth of non-transformed cells. J. Cell Biol. 101: Abst. 435, p. 115.

    Google Scholar 

  • Sariola, H., P. Ekblom, E. Lehtonen, and L. Saxen (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev. Biol. 96: 926–927.

    Google Scholar 

  • Savion, N., I. Vlodavsky, and Z. Fuks (1984) Interaction of T-lymphocytes and macrophages with cultured vascular endothelial cells. J. Ce 118: 169–178.

    PubMed  CAS  Google Scholar 

  • Saxen, L., P. Ekblom, and E. Lehtonen (1982) The kidney as a model system for determination and differentation. In The Biology of Normal Human Growth, M. Ritzen, A. Aperia, K. Hall, A. Larsson, A. Zettersberg and R. Zetterstrom, eds., pp. 177–127. Raven Press, New York.

    Google Scholar 

  • Schlessinger, J., and B. Geiger. Epidermal growth factor induces redistribution of actin and actinin in human epidermal carcinoma cells. Exp. Cell Res. 134: 273–279.

    Google Scholar 

  • Schlessinger, J. (1980) The mechanism and role of hormone induced clustering of membrane receptor. Trends Biol. Sci. 5: 210-214.

    Google Scholar 

  • Schreiber, A.B., J. Kenney, W.J. Kowalski, R. Friesel, T. Mehlaman, and T. Maciag (1985) Interaction of endothelial cell growth factor with heparin: Characterization by receptor and antibody recognition. Proc. Natl. Acad. Sci. (USA) 82: 6138–6142.

    CAS  Google Scholar 

  • Schwartz, S.M., and C.M. Gajdusek (1982) Growth factors and the vessel wall. Prog. Hemost. Thromb. 5: 85–112.

    Google Scholar 

  • Schwartz, S.M., C.M. Gajdusek, and S.C. Selden, III. (1981) Vascular wall growth control: The role of the endothelium. Arteriosclerosis 1: 107–126.

    PubMed  Google Scholar 

  • Serrero, G., and J.C. Khoo (1982) An in vitro model to study adipocyte differentiation in serum free medium. Anal. Biochem. 120: 351–359.

    PubMed  CAS  Google Scholar 

  • Simonian, M.H., P.J. Hornsby, C.R. Ill, M.J. O’Hare, and G.N. Gill (1979) Characterization of cultured bovine adrenal cortical and derived clonal lines: Regulation of steroidogenesis and culture life span. Endocrinology 105: 99–108.

    PubMed  CAS  Google Scholar 

  • Shing, Y., J. Folkman, R. Sullivan, C. Butterfield, J. Curray, and M. Klagsbrun (1984) Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor. Science 223: 1296–1298.

    PubMed  CAS  Google Scholar 

  • Singer, M. (1954) Induction of regeneration of the forelimb of the post-metamorphic frog by augmentation of the nerve supply. J. Exp. Zool. 126: 419–471.

    Google Scholar 

  • Singer, M. (1952) The influence of the nerve in regeneration of the amphibian extremity. Q. Rev. Biol. 27: 169–200.

    PubMed  CAS  Google Scholar 

  • Singer, M. (1974) Neurotrophic control of limb regeneration in the newt. Ann. N.Y. Acad. Sci. 228: 308–322.

    PubMed  CAS  Google Scholar 

  • Singer, M., and L. Craven (1948) The growth and morphogenesis of the regenerating fore- limb of adult triturus following denervation at various stages of development. J. Exp. Zool. 108: 279–308.

    CAS  Google Scholar 

  • Tannock, I.F. (1945) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumor in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. 6: 73–85.

    Google Scholar 

  • Thesleff, I., H.J. Barrach, J.M. Foidart, A. Vaheri, RiM. Pratt, and G.R. Martin (1981) Tissue interactions in tooth development. A review. Dev. Biol. 81: 182–192.

    CAS  Google Scholar 

  • Thomas, K.A., M.C. Riley, S.K. Lemmon, N.C. Baglan, and R.A. Bradshaw (1980) Brain fibroblast growth factor: Nonidentity with myelin basic protein fragments. J. Biol. Chem. 255: 5517–5520.

    PubMed  CAS  Google Scholar 

  • Thomas, K.A., M. Rios-Candelore, and S. Fitzpatrick (1984) Purificaton and characteri¬zation of acidic fibroblast growth factor from bovine brain. Proc. Natl. Acad. Sci. (USA) 81: 357–361.

    CAS  Google Scholar 

  • Thomas, K.A., M. Rios-Candelore, G. Gimenez-Gallego, J. DiSalvo, C. Bennett. J. Rodkey, and S. Fitzpatrick (1985) Pure brain derived fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin. I. Proc. Natl. Acad. Sci (U 82: 6409–6413.

    CAS  Google Scholar 

  • Thornton, S.C., S.N. Mueller, and E.M. Levine (1983) Human endothelial cells: Use of heparin in cloning and long term serial cultivation. Science 222: 623–625.

    PubMed  CAS  Google Scholar 

  • Todd, J.T. (1823) On the process of reproduction of the members of the aquatic salamander. Q. J. Mic. Sci. Lit. Arts 16: 84–96.

    Google Scholar 

  • Togari, A., D. Baker, G. Dickens, and G. Guroff (1983) The neurite-promoting effect of fibroblast growth factor on PC-12 cells. Biochem. Biophys. Res. Commun. 114: 1189–1193.

    PubMed  CAS  Google Scholar 

  • Togari, A., G. Dickens, H. Huzuya, and G. Guroff (1985) The effect of fibroblast growth factor on PC-12 cells. 3. Neurosciences 5: 307–316.

    CAS  Google Scholar 

  • Turner, D.C., and J.T. Bagnara (1981) General Endocrinology, 5th ed., pp. 349–386. Saunder, Philadelphia.

    Google Scholar 

  • Tseng, S., N. Savion, R. Stern, and D. Gospodarowicz (1982) Fibroblast growth factor modulates synthesis of collagen in cultured vascular endothelial cells. Eur. J. Biochem. 122: 355–360.

    PubMed  CAS  Google Scholar 

  • Tsuda, T., K. Kaibuchi, Y. Kawahara, H. Fukuzaki, and Y. Takai (1985) Induction of protein kinase C and calcium ion mobilization by fibroblast growth factor in Swiss 3T3 cells. FEBS letter, in press.

    Google Scholar 

  • Vlodavsky, I., and D. Gospodarowicz (1979) Structural and functional alterations in the surface of vascular endothelial cells associated with the formation of a confluent cell monolayer and with the withdrawal of fibroblast growth factor. J. Supramol. Struct. 12: 73–14.

    PubMed  CAS  Google Scholar 

  • Vlodavsky, I., L.K. Johnson, G. Greenburg, and D. Gospodarowicz (1979) Vascular endothelial cells maintained in the absence of fibroblast growth factor undergo structural and functional alterations that are incompatible with their in vivo differen¬tiated properties. J. Cell Biol. 83: 468–486.

    PubMed  CAS  Google Scholar 

  • Wasteson, A., B. Glimelius, C. Busch, B. Westermark, C.-H. Heldlin, and B. Norling (1977) Effect of a platelet endoglycosidase on cell surface heparin sulfate of human cultured endothelial and glial cells. Thromb. Res. 11: 309–321.

    PubMed  CAS  Google Scholar 

  • Waterfield, M.D., G.T. Scrace, N. Whittle, P. Stroobant, A. Johnson, A. Wasteson, B.

    Google Scholar 

  • Westermark, C.H. Heldlin, 3.S. Huang, and T.F. Deuel. Platelet-derived growth factor is structurally related to the putative transforming protein p 28sis of simian sarcoma virus. Nature 304: 35–39.

    Google Scholar 

  • Westall, F.C., R. Rubin, and D. Gospodarowicz (1983) Brain-derived growth factor: A study of its inactivation. Life Sciences 33: 2425–2429.

    PubMed  CAS  Google Scholar 

  • Westermark, B., C.H. Heldin, B. Ek, A. Jchnson, K. Mellstrom, M. Nister, and A. Waste- son (1982) Biochemistry and biology of platelet-derived growth factor. In Growth and Maturatoin Factors, G. Guroff, ed., vol. I, pp. 75–112. Wiley, New York.

    Google Scholar 

  • Wessels, N.K. (1977) Extracellular materials and tissue interaction, In Tissue Interaction and Development, pp. 213–229. W.A. Benjamin, Inc., New York.

    Google Scholar 

  • Yamada, T. (1977) Control mechanisms in cell type conversion in newt lens regeneration. In Monogr. Dev. Biol., vol. 13, A. Wolsky, ed., pp. 1–126. Karger, Basel, New York.

    Google Scholar 

  • Yamada, T. (1982) Transdifferentiation of lens cells and its regulation. In Ceil Biology of the Eye, McDevitt, ed., pp. 193–234. Acad. Press, New York.

    Google Scholar 

  • Yamada, T. and D.S. McDevitt (1974) Direct evidence for transformation of differenti¬ated iris epithelial cells into lens cells. Dev. Biol. 38: 104–124.

    PubMed  CAS  Google Scholar 

  • Yahalom, J., A. Eldor, Z. Fuks, and I. Vlodavsky (1984) Degradation of sulfated proteoglycans in the subendothelial basement membrane by human platelet heparitinase. J. Clin. Inv. 74: 1842–1849.

    CAS  Google Scholar 

  • Zetter, B.R. (1981) The endothelial cells of large and small blood vessels. Diabetes 30: 24–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Hedelberg

About this paper

Cite this paper

Gospodarowicz, D., Neufeld, G. (1987). Fibroblast Growth Factor: Molecular and Biological Properties. In: Wolff, J.R., Sievers, J., Berry, M. (eds) Mesenchymal-Epithelial Interactions in Neural Development. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71837-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71837-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71839-7

  • Online ISBN: 978-3-642-71837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics